Performance of Bio-Composite Carbonized Materials in Probiotic Applications

A new composite sorbent based on carbonized rice husk (CRH) and immobilized on it living cells and inactivated cultural liquid containing antimicrobials metabolites of Bacillus subtilis CK-245 is developed. The sorption and antimicrobic activity of CRH concerning five species of Enterobacteriaceae is studied. Prospects of use of developed sorbent in medicine and veterinary science is shown.

Finite Element Study of a DfD Beam-Column Connection

Design for Disassembly (DfD) aims to reuse the structural components instead of demolition followed by recycling of the demolition debris. This concept preserves the invested embodied energy of materials, thus reducing inputs of new embodied energy during materials reprocessing or remanufacturing. Both analytical and experimental research on a proposed DfD beam-column connection for use in residential apartments is currently investigated at the National University of Singapore in collaboration with the Housing and Development Board of Singapore. The present study reports on the results of a numerical analysis of the proposed connection utilizing finite element analysis. The numerical model was calibrated and validated by comparison against experimental results. Results of a parametric study will also be presented and discussed.

Intellectual Capital Report for Universities

Intellectual capital reporting becomes critical at universities, mainly due to the fact that knowledge is the main output as well as input in these institutions. In addition, universities have continuous external demands for greater information and transparency about the use of public funds, and are increasingly provided with greater autonomy regarding their organization, management, and budget allocation. This situation requires new management and reporting systems. The purpose of the present study is to provide a model for intellectual capital report in Spanish universities. To this end, a questionnaire was sent to every member of the Social Councils of Spanish public universities in order to identify which intangible elements university stakeholders demand most. Our proposal for an intellectual capital report aims to act as a guide to help the Spanish universities on the road to the presentation of information on intellectual capital which can assist stakeholders to make the right decisions.

The Nanobiotechnology of Obtaining of Collagen Gels from Marin Fish Skin and Yours Reological Properties for using Like New Materials in Dental Medicine

This paper aims at presenting the biotechnology used to obtain collagen-based gels from shark (Squalus acanthias) and brill skin, marine fish growing in the Black Sea. Due to the structure of its micro-fibres, collagen can be considered a nanomaterial; in order to use collagen-based matrixes as biomaterial, rheological studies must be performed first, to state whether they are stable or not. For the triple-helix structure to remain stable within these gels at room or human body temperature, they must be stabilized by reticulation.

Effect of Calcium Chloride on Rheological Properties and Structure of Inulin - Whey Protein Gels

The rheological properties, structure and potential synergistic interactions of whey proteins (1-6%) and inulin (20%) in mixed gels in the presence of CaCl2 was the aim of this study. Whey proteins have a strong influence on inulin gel formation. At low concentrations (2%) whey proteins did not impair in inulin gel formation. At higher concentration (4%) whey proteins impaired inulin gelation and inulin impaired the formation of a Ca2+-induced whey protein network. The presence of whey proteins at a level allowing for protein gel network formation (6%) significantly increased the rheological parameters values of the gels. SEM micrographs showed that whey protein structure was coated by inulin moieties which could make the mixed gels firmer. The protein surface hydrophobicity measurements did not exclude synergistic interactions between inulin and whey proteins, however. The use of an electrophoretic technique did not show any stable inulin-whey protein complexes.

Characterization of Microroughness Parameters in Cu and Cu2O Nanoparticles Embedded in Carbon Film

The morphological parameter of a thin film surface can be characterized by power spectral density (PSD) functions which provides a better description to the topography than the RMS roughness and imparts several useful information of the surface including fractal and superstructure contributions. Through the present study Nanoparticle copper/carbon composite films were prepared by co-deposition of RF-Sputtering and RF-PECVD method from acetylene gas and copper target. Surface morphology of thin films is characterized by using atomic force microscopy (AFM). The Carbon content of our films was obtained by Rutherford Back Scattering (RBS) and it varied from .4% to 78%. The power values of power spectral density (PSD) for the AFM data were determined by the fast Fourier transform (FFT) algorithms. We investigate the effect of carbon on the roughness of thin films surface. Using such information, roughness contributions of the surface have been successfully extracted.