Sky Farming: The Alternative Concept of Green Building Using Vertical Landscape Model in Urban Area as an Effort to Achieve Sustainable Development

This paper is a literature review presented descriptively to review the concept of green building to face the challenge of sustainable development and food in urban areas. In this paper, researchers initiated the concept of green building with sky farming method. Sky farming use vertical landscape system in order to realizing food self-sufficient green city. Sky farming relying on plantings and irrigation system efficiency in the building which is adopted the principles of green building. Planting system is done by applying hydroponic plants with Nutrient Film Technique (NFT) using energy source of solar cell and grey water from the processing of waste treatment plant. The application of sky farming in urban areas can be a recommendation for the design of environmental-friendly construction. In order to keep the land and distance efficiency, this system is a futuristic idea that would be the connector of human civilization in the future.

Investigation about Structural and Optical Properties of Bulk and Thin Film of 1H-CaAlSi by Density Functional Method

Optical properties of bulk and thin film of 1H-CaAlSi for two directions (1,0,0) and (0,0,1) were studied. The calculations are carried out by Density Functional Theory (DFT) method using full potential. GGA approximation was used to calculate exchange-correlation energy. The calculations are performed by WIEN2k package. The results showed that the absorption edge is shifted backward 0.82eV in the thin film than the bulk for both directions. The static values of the real part of dielectric function for four cases were obtained. The static values of the refractive index for four cases are calculated too. The reflectivity graphs have shown an intensive difference between the reflectivity of the thin film and the bulk in the ultraviolet region.

Physicochemical Stability of Pulse Spreads during Storage after Sous Vide Treatment and High Pressure Processing

Pulses are high in plant protein and dietary fiber, and contain slowly digestible starches. Innovative products from pulses could increase their consumption and benefit consumer health. This study was conducted to evaluate physicochemical stability of processed cowpea (Vigna unguiculata (L.) Walp. cv. Fradel) and maple pea (Pisum sativum var. arvense L. cv. Bruno) spreads at 5 °C temperature during 62-day storage. Physicochemical stability of pulse spreads was compared after sous vide treatment (80 °C/15 min) and high pressure processing (700 MPa/10 min/20 °C). Pulse spreads were made by homogenizing cooked pulses in a food processor together with salt, citric acid, oil, and bruschetta seasoning. A total of four different pulse spreads were studied: Cowpea spread without and with seasoning, maple pea spread without and with seasoning. Transparent PA/PE and light proof PET/ALU/PA/PP film pouches were used for packaging of pulse spreads under vacuum. The parameters investigated were pH, water activity and mass losses. Pulse spreads were tested on days 0, 15, 29, 42, 50, 57 and 62. The results showed that sous-vide treatment and high pressure processing had an insignificant influence on pH, water activity and mass losses after processing, irrespective of packaging material did not change (p>0.1). pH and water activity of sous-vide treated and high pressure processed pulse spreads in different packaging materials proved to be stable throughout the storage. Mass losses during storage accounted to 0.1% losses. Chosen sous-vide treatment and high pressure processing regimes and packaging materials are suitable to maintain consistent physicochemical quality of the new products during 62-day storage.

The Effect of Prior Characteristic on Perceived Prosocial Content in Media

It was important to understand the impact of media in young adolescents. The animated film, Khun Tong Dang the Inspirations (2015), was purposefully created for teaching young children to have a positive personal trait. The current study used this film as the case study. The objective is to understand the relationship between the good characteristic of movie audiences and their perception of the good characteristic of a movie character. One-hundred students from various age ranges responded to quantitative questionnaires. The questions included their age, gender, perception about their own personal traits, perception about their experiences with others, and perception about the bravery, intelligence, and gratefulness of the character. It was found that a good personal trait has a strong relationship with the perception of bravery, intelligence, and gratefulness of the character.

Hand Gesture Interpretation Using Sensing Glove Integrated with Machine Learning Algorithms

In this paper, we present a low cost design for a smart glove that can perform sign language recognition to assist the speech impaired people. Specifically, we have designed and developed an Assistive Hand Gesture Interpreter that recognizes hand movements relevant to the American Sign Language (ASL) and translates them into text for display on a Thin-Film-Transistor Liquid Crystal Display (TFT LCD) screen as well as synthetic speech. Linear Bayes Classifiers and Multilayer Neural Networks have been used to classify 11 feature vectors obtained from the sensors on the glove into one of the 27 ASL alphabets and a predefined gesture for space. Three types of features are used; bending using six bend sensors, orientation in three dimensions using accelerometers and contacts at vital points using contact sensors. To gauge the performance of the presented design, the training database was prepared using five volunteers. The accuracy of the current version on the prepared dataset was found to be up to 99.3% for target user. The solution combines electronics, e-textile technology, sensor technology, embedded system and machine learning techniques to build a low cost wearable glove that is scrupulous, elegant and portable.

Topochemical Synthesis of Epitaxial Silicon Carbide on Silicon

A method is developed for the solid-phase synthesis of epitaxial layers when the substrate itself is involved into a topochemical reaction and the reaction product grows in the interior of substrate layer. It opens up new possibilities for the relaxation of the elastic energy due to the attraction of point defects formed during the topochemical reaction in anisotropic media. The presented method of silicon carbide (SiC) formation employs a topochemical reaction between the single-crystalline silicon (Si) substrate and gaseous carbon monoxide (CO). The corresponding theory of interaction of point dilatation centers in anisotropic crystals is developed. It is eliminated that the most advantageous location of the point defects is the direction (111) in crystals with cubic symmetry. The single-crystal SiC films with the thickness up to 200 nm have been grown on Si (111) substrates owing to the topochemical reaction with CO. Grown high-quality single-crystal SiC films do not contain misfit dislocations despite the huge lattice mismatch value of ~20%. Also the possibility of growing of thick wide-gap semiconductor films on these templates SiC/Si(111) and, accordingly, its integration into Si electronics, is demonstrated. Finally, the ab initio theory of SiC formation due to the topochemical reaction has been developed.

Increase of Energy Efficiency by Means of Application of Active Bearings

In the present paper, increasing of energy efficiency of a thrust hybrid bearing with a central feeding chamber is considered. The mathematical model was developed to determine the pressure distribution and the reaction forces, based on the Reynolds equation and static characteristics’ equations. The boundary problem of pressure distribution calculation was solved using the method of finite differences. For various types of lubricants, geometry and operational characteristics, axial gaps can be determined, where the minimal friction coefficient is provided. The next part of the study considers the application of servovalves in order to maintain the desired position of the rotor. The report features the calculation results and the analysis of the influence of the operational and geometric parameters on the energy efficiency of mechatronic fluid-film bearings.

Resveratrol Incorporated Liposomes Prepared from Pegylated Phospholipids and Cholesterol

Liposomes and pegylated liposomes were widely used as drug delivery system in pharmaceutical field since a long time. However, in the former time, polyethylene glycol (PEG) was connected into phospholipid after the liposomes were already prepared. In this paper, we intend to study the possibility of applying phospholipids which already connected with PEG and then they were used to prepare liposomes. The model drug resveratrol was used because it can be applied against different diseases. Cholesterol was applied to stabilize the membrane of liposomes. The thin film technique in a laboratory scale was a preparation method. The liposomes were then characterized by nanoparticle tracking analysis (NTA), photon correlation spectroscopy (PCS) and light microscopic techniques. The stable liposomes can be produced and the particle sizes after filtration were in nanometers. The 2- and 3-chains-PEG-phospholipid (PL) caused in smaller particle size than the 4-chains-PEG-PL. Liposomes from PL 90G and cholesterol were stable during storage at 8 °C of 56 days because the particle sizes measured by PCS were almost not changed. There was almost no leakage of resveratrol from liposomes PL 90G with cholesterol after diffusion test in dialysis tube for 28 days. All liposomes showed the sustained release during measuring time of 270 min. The maximum release amount of 16-20% was detected with liposomes from 2- and 3-chains-PEG-PL. The other liposomes gave max. release amount of resveratrol only of 10%. The release kinetic can be explained by Korsmeyer-Peppas equation. 

AINA: Disney Animation Information as Educational Resources

With the emergence and development of Information and Communications Technologies (ICTs), Higher Education is experiencing rapid changes, not only in its teaching strategies but also in student’s learning skills. However, we have noticed that students often have difficulty when seeking innovative, useful, and interesting learning resources for their work. This is due to the lack of supervision in the selection of good query tools. This paper presents AINA, an Information Retrieval (IR) computer system aimed at providing motivating and stimulating content to both students and teachers working on different areas and at different educational levels. In particular, our proposal consists of an open virtual resource environment oriented to the vast universe of Disney comics and cartoons. Our test suite includes Disney’s long and shorts films, and we have performed some activities based on the Just In Time Teaching (JiTT) methodology. More specifically, it has been tested by groups of university and secondary school students.

Improvement of Chemical Demulsifier Performance Using Silica Nanoparticles

The reduction of water content in crude oil emulsions reduces pipeline corrosion potential and increases the productivity. Chemical emulsification of crude oil emulsions is one of the methods available to reduce the water content. Presence of demulsifier causes the film layer between the crude oil emulsion and water droplets to become unstable leading to the acceleration of water coalescence. This research has been performed to study the improvement performance of a chemical demulsifier by silica nanoparticles. The silica nano-particles have been synthesized by sol-gel technique and precipitation using poly vinyl alcohol (PVA) and poly ethylene glycol (PEG) as surfactants and then nano-particles are added to the demulsifier. The silica nanoparticles were characterized by Particle Size Analyzer (PSA) and SEM. Upon the addition of nanoparticles, bottle tests have been carried out to separate and measure the water content. The results show that silica nano-particles increase the demulsifier efficiency by about 40%.

Approximation of PE-MOCVD to ALD for TiN Concerning Resistivity and Chemical Composition

The miniaturization of circuits is advancing. During chip manufacturing, structures are filled for example by metal organic chemical vapor deposition (MOCVD). Since this process reaches its limits in case of very high aspect ratios, the use of alternatives such as the atomic layer deposition (ALD) is possible, requiring the extension of existing coating systems. However, it is an unsolved question to what extent MOCVD can achieve results similar as an ALD process. In this context, this work addresses the characterization of a metal organic vapor deposition of titanium nitride. Based on the current state of the art, the film properties coating thickness, sheet resistance, resistivity, stress and chemical composition are considered. The used setting parameters are temperature, plasma gas ratio, plasma power, plasma treatment time, deposition time, deposition pressure, number of cycles and TDMAT flow. The derived process instructions for unstructured wafers and inside a structure with high aspect ratio include lowering the process temperature and increasing the number of cycles, the deposition and the plasma treatment time as well as the plasma gas ratio of hydrogen to nitrogen (H2:N2). In contrast to the current process configuration, the deposited titanium nitride (TiN) layer is more uniform inside the entire test structure. Consequently, this paper provides approaches to employ the MOCVD for structures with increasing aspect ratios.

Effect of Gamma Radiation on Bromophenol Blue Dyed Films as Dosimeter

Ionizing radiation can cause a drastic change in the physical and chemical properties of the material exposed. Numerous medical devices are sterilized by ionizing radiation. In the current research paper, an attempt was made to develop precise and inexpensive polymeric film dosimeter which can be used for controlling radiation dosage. Polymeric film containing (pH sensitive dye) indicator dye Bromophenol blue (BPB) was casted to check the effect of Gamma radiation on its optical and physical properties. The film was exposed to gamma radiation at 4 kGy/hr in the range of 0 to 300 kGy at an interval of 50 kGy. Release of vinyl acetate from an emulsion on high radiation reacts with the BPB fading the color of the film from blue to light blue and then finally colorless, indicating a change in pH from basic to acidic form. The change was characterized by using CIE l*a*b*, ultra-violet spectroscopy and FT-IR respectively.

Criminal Justice System, Health and Imprisonment in India

Imprisonment is an expansive concept, as it is regulated by laws under criminal justice system of the state. The state sets principles of punishment to control offenders and also puts limits to excess punitive control. One significant way through which it exercises control is through rules governing healthcare of imprisoned population. Prisons signify specialized settings which accommodate both medical and legal concerns. The provision of care operates within the institutional paradigm of punishment. This requires the state to negotiate adequately between goals of punishment and fulfilment of basic human rights of offenders. The present study is based on a critical analysis of prison healthcare standards in India, which include government policies and guidelines. It also demonstrates how healthcare is delivered by drawing insights from a primary study conducted in a correctional home in the state of West Bengal, India, which houses both male and female inmates. Forty women were interviewed through semi-structured interviews, followed by focus group discussions. Doctors and administrative personnel were also interviewed. Findings show how institutional practices control women through subversion of the role of doctors to prison administration. Also, poor healthcare infrastructure, unavailability of specialized services, hierarchies between personnel and inmates make prisons unlikely sites for therapeutic intervention. The paper further discusses how institutional practices foster gender-based discriminatory practices.

Application of UV-C Irradiation on Quality and Textural Properties of Button Mushrooms

The effect of 1.0 kJ/m2 Ultraviolet-C (UV-C) light on pH, weight loss, color, and firmness of button mushroom (Agaricus bisporus) tissues during 21-days storage at 4 ºC was studied. UV-C irradiation enhanced pH, weight, color parameters, and firmness of mushroom during storage compared to control treatment. However, application of 1.0 kJ/m2 UV-C treatment could effectively induce the increase of weight loss, firmness, and pH to 14.53%, 49.82%, and 10.39%, respectively. These results suggest that the application of UV-C irradiation could be an effective method to maintain the postharvest quality of mushrooms.

Morphology Study of Inverted Planar Heterojunction Perovskite Solar Cells in Sequential Deposition

In this study, a sequential deposition process is used for the fabrication of PEDOT: PSS based inverted planar perovskite solar cell. A small amount of additive deionized water (DI-H2O) was added into PbI2 + Dimethyl formamide (DMF) precursor solution in order to increase the solubility of PbI2 in DMF, and finally to manipulate the surface morphology of the perovskite films. A morphology transition from needle like structure to hexagonal plates, and then needle-like again has been observed as the DI-H2O was added continuously (0.0 wt% to 3.0wt%). The latter one leads to full surface coverage of the perovskite, which is essential for high performance solar cell.

Swelling Behaviour of Kappa Carrageenan Hydrogel in Neutral Salt Solution

Hydrogel films were prepared from kappa carrageenan by crosslinking with glutaraldehyde. Carrageenan films extracted from Kappaphycus alvarezii seaweed were immersed in glutaraldehyde solution for 2 min and then cured at 110 °C for 25 min. The obtained crosslinked films were washed with ethanol to remove the unreacted glutaraldehyde and then air dried to constant weights. The aim of this research was to study the swelling degree behaviour of the hydrogel film to neutral salts solution, namely NaCl, KCl, and CaCl2. The results showed that swelling degree of crosslinked films varied non-monotonically with salinity of NaCl. Swelling degree decreased with the increasing of KCl concentration. Swelling degree of crosslinked film in CaCl2 solution was lower than that in NaCl and in KCl solutions.

Determination of Optical Constants of Semiconductor Thin Films by Ellipsometry

Ellipsometry is an optical method based on the study of the behavior of polarized light. The light reflected on a surface induces a change in the polarization state which depends on the characteristics of the material (complex refractive index and thickness of the different layers constituting the device). The purpose of this work is to determine the optical properties of semiconductor thin films by ellipsometry. This paper describes the experimental aspects concerning the semiconductor samples, the SE400 ellipsometer principle, and the results obtained by direct measurements of ellipsometric parameters and modelling using appropriate software.

Further the Future: The Exploratory Study in 3D Animation Marketing Trend and Industry in Thailand

Lately, many media organizations in Thailand have started to produce 3D animation, so the quality of personnel should be identified. As an instructor in the school of Animation and Multimedia, the researchers have to prepare the students, suitable for the need of industry. The current study used exploratory research design to establish the knowledge of about this issue, including the required qualification of employees and the potential of animation industry in Thailand. The interview sessions involved three key informants from three well-known organizations. The interview data was used to design a questionnaire for the confirmation phase. The overall results showed that the industry needed an individual with 3D animation skill, computer graphic skills, good communication skills, a high responsibility, and an ability to finish the project on time. Moreover, it is also found that there were currently various kinds of media where 3D animation has been involved, such as films, TV variety, TV advertising, online advertising, and application on mobile device.

Traction Behavior of Linear Piezo-Viscous Lubricants in Rough Elastohydrodynamic Lubrication Contacts

The traction behavior of lubricants with the linear pressure-viscosity response in EHL line contacts is investigated numerically for smooth as well as rough surfaces. The analysis involves the simultaneous solution of Reynolds, elasticity and energy equations along with the computation of lubricant properties and surface temperatures. The temperature modified Doolittle-Tait equations are used to calculate viscosity and density as functions of fluid pressure and temperature, while Carreau model is used to describe the lubricant rheology. The surface roughness is assumed to be sinusoidal and it is present on the nearly stationary surface in near-pure sliding EHL conjunction. The linear P-V oil is found to yield much lower traction coefficients and slightly thicker EHL films as compared to the synthetic oil for a given set of dimensionless speed and load parameters. Besides, the increase in traction coefficient attributed to surface roughness is much lower for the former case. The present analysis emphasizes the importance of employing realistic pressure-viscosity response for accurate prediction of EHL traction.

Electrophysical and Thermoelectric Properties of Nano-scaled In2O3:Sn, Zn, Ga-Based Thin Films: Achievements and Limitations for Thermoelectric Applications

The thermoelectric properties of nano-scaled In2O3:Sn films deposited by spray pyrolysis are considered in the present report. It is shown that multicomponent In2O3:Sn-based films are promising material for the application in thermoelectric devices. It is established that the increase in the efficiency of thermoelectric conversion at CSn~5% occurred due to nano-scaled structure of the films studied and the effect of the grain boundary filtering of the low energy electrons. There are also analyzed the limitations that may appear during such material using in devices developed for the market of thermoelectric generators and refrigerators. Studies showed that the stability of nano-scaled film’s parameters is the main problem which can limit the application of these materials in high temperature thermoelectric converters.