A Wireless Secure Remote Access Architecture Implementing Role Based Access Control: WiSeR

In this study, we propose a network architecture for providing secure access to information resources of enterprise network from remote locations in a wireless fashion. Our proposed architecture offers a very promising solution for organizations which are in need of a secure, flexible and cost-effective remote access methodology. Security of the proposed architecture is based on Virtual Private Network technology and a special role based access control mechanism with location and time constraints. The flexibility mainly comes from the use of Internet as the communication medium and cost-effectiveness is due to the possibility of in-house implementation of the proposed architecture.

Adaptive Radio Resource Allocation for Multiple Traffic OFDMA Broadband Wireless Access System

In this paper, an adaptive radio resource allocation (RRA) algorithm applying to multiple traffic OFDMA system is proposed, which distributes sub-carrier and loading bits among users according to their different QoS requirements and traffic class. By classifying and prioritizing the users based on their traffic characteristic and ensuring resource for higher priority users, the scheme decreases tremendously the outage probability of the users requiring a real time transmission without impact on the spectrum efficiency of system, as well as the outage probability of data users is not increased compared with the RRA methods published.

An Energy Efficient Protocol for Target Localization in Wireless Sensor Networks

Target tracking and localization are important applications in wireless sensor networks. In these applications, sensor nodes collectively monitor and track the movement of a target. They have limited energy supplied by batteries, so energy efficiency is essential for sensor networks. Most existing target tracking protocols need to wake up sensors periodically to perform tracking. Some unnecessary energy waste is thus introduced. In this paper, an energy efficient protocol for target localization is proposed. In order to preserve energy, the protocol fixes the number of sensors for target tracking, but it retains the quality of target localization in an acceptable level. By selecting a set of sensors for target localization, the other sensors can sleep rather than periodically wake up to track the target. Simulation results show that the proposed protocol saves a significant amount of energy and also prolongs the network lifetime.

Development of Indwelling Wireless pH Telemetry of Intraoral Acidity

As the increase of intraoral acidity due to ingestion of sweet foods and acidic beverages usually bring forth a dental caries and a erosion, the measurement of intraoral pH is essential in the study of oral environment. The indwelling intraoral pH telemetry for lasting longer than 24 hours in the mouth was developed to overcome the limits of conventional wire electrode method previously used for salivary and plaque pH measurement, and to assess its effectiveness.

Secure Protocol for Short Message Service

Short Message Service (SMS) has grown in popularity over the years and it has become a common way of communication, it is a service provided through General System for Mobile Communications (GSM) that allows users to send text messages to others. SMS is usually used to transport unclassified information, but with the rise of mobile commerce it has become a popular tool for transmitting sensitive information between the business and its clients. By default SMS does not guarantee confidentiality and integrity to the message content. In the mobile communication systems, security (encryption) offered by the network operator only applies on the wireless link. Data delivered through the mobile core network may not be protected. Existing end-to-end security mechanisms are provided at application level and typically based on public key cryptosystem. The main concern in a public-key setting is the authenticity of the public key; this issue can be resolved by identity-based (IDbased) cryptography where the public key of a user can be derived from public information that uniquely identifies the user. This paper presents an encryption mechanism based on the IDbased scheme using Elliptic curves to provide end-to-end security for SMS. This mechanism has been implemented over the standard SMS network architecture and the encryption overhead has been estimated and compared with RSA scheme. This study indicates that the ID-based mechanism has advantages over the RSA mechanism in key distribution and scalability of increasing security level for mobile service.

Energy Efficient Clustering and Data Aggregation in Wireless Sensor Networks

Wireless Sensor Networks (WSNs) are wireless networks consisting of number of tiny, low cost and low power sensor nodes to monitor various physical phenomena like temperature, pressure, vibration, landslide detection, presence of any object, etc. The major limitation in these networks is the use of nonrechargeable battery having limited power supply. The main cause of energy consumption WSN is communication subsystem. This paper presents an efficient grid formation/clustering strategy known as Grid based level Clustering and Aggregation of Data (GCAD). The proposed clustering strategy is simple and scalable that uses low duty cycle approach to keep non-CH nodes into sleep mode thus reducing energy consumption. Simulation results demonstrate that our proposed GCAD protocol performs better in various performance metrics.

Studies on Determination of the Optimum Distance Between the Tmotes for Optimum Data Transfer in a Network with WLL Capability

Using mini modules of Tmotes, it is possible to automate a small personal area network. This idea can be extended to large networks too by implementing multi-hop routing. Linking the various Tmotes using Programming languages like Nesc, Java and having transmitter and receiver sections, a network can be monitored. It is foreseen that, depending on the application, a long range at a low data transfer rate or average throughput may be an acceptable trade-off. To reduce the overall costs involved, an optimum number of Tmotes to be used under various conditions (Indoor/Outdoor) is to be deduced. By analyzing the data rates or throughputs at various locations of Tmotes, it is possible to deduce an optimal number of Tmotes for a specific network. This paper deals with the determination of optimum distances to reduce the cost and increase the reliability of the entire sensor network with Wireless Local Loop (WLL) capability.

RF Permeability Test in SOC Structure for Establishing USN(Ubiquitous Sensor Network)

Recently, as information industry and mobile communication technology are developing, this study is conducted on the new concept of intelligent structures and maintenance techniques that applied wireless sensor network, USN (Ubiquitous Sensor Network), to social infrastructures such as civil and architectural structures on the basis of the concept of Ubiquitous Computing that invisibly provides human life with computing, along with mutually cooperating, compromising and connecting networks each other by having computers within all objects around us. Therefore, the purpose of this study is to investigate the capability of wireless communication of sensor node embedded in reinforced concrete structure with a basic experiment on an electric wave permeability of sensor node by fabricating molding with variables of concrete thickness and steel bars that are mostly used in constructing structures to determine the feasibility of application to constructing structures with USN. At this time, with putting the pitches of steel bars, the thickness of concrete placed, and the intensity of RF signal of a transmitter-receiver as variables and when wireless communication module was installed inside, the possible communication distance of plain concrete and the possible communication distance by the pitches of steel bars was measured in the horizontal and vertical direction respectively. Besides, for the precise measurement of diminution of an electric wave, the magnitude of an electric wave in the range of used frequencies was measured by using Spectrum Analyzer. The phenomenon of diminution of an electric wave was numerically analyzed and the effect of the length of wavelength of frequencies was analyzed by the properties of a frequency band area. As a result of studying the feasibility of an application to constructing structures with wireless sensor, in case of plain concrete, it shows 45cm for the depth of permeability and in case of reinforced concrete with the pitches of 5cm, it shows 37cm and 45cm for the pitches of 15cm.

Comparison of Multi-User Detectors of DS-CDMA System

DS-CDMA system is well known wireless technology. This system suffers from MAI (Multiple Access Interference) caused by Direct Sequence users. Multi-User Detection schemes were introduced to detect the users- data in presence of MAI. This paper focuses on linear multi-user detection schemes used for data demodulation. Simulation results depict the performance of three detectors viz-conventional detector, Decorrelating detector and Subspace MMSE (Minimum Mean Square Error) detector. It is seen that the performance of these detectors depends on the number of paths and the length of Gold code used.

A Mobile Multihop Relay Dynamic TDD Scheme for Cellular Networks

In this paper, we present an analytical framework for the evaluation of the uplink performance of multihop cellular networks based on dynamic time division duplex (TDD). New wireless broadband protocols, such as WiMAX, WiBro, and 3G-LTE apply TDD, and mobile communication protocols under standardization (e.g., IEEE802.16j) are investigating mobile multihop relay (MMR) as a future technology. In this paper a novel MMR TDD scheme is presented, where the dynamic range of the frame is shared to traffic resources of asymmetric nature and multihop relaying. The mobile communication channel interference model comprises of inner and co-channel interference (CCI). The performance analysis focuses on the uplink due to the fact that the effects of dynamic resource allocation show significant performance degradation only in the uplink compared to time division multiple access (TDMA) schemes due to CCI [1-3], where the downlink results to be the same or better.The analysis was based on the signal to interference power ratio (SIR) outage probability of dynamic TDD (D-TDD) and TDMA systems,which are the most widespread mobile communication multi-user control techniques. This paper presents the uplink SIR outage probability with multihop results and shows that the dynamic TDD scheme applying MMR can provide a performance improvement compared to single hop applications if executed properly.

Routing in Mobile Wireless Networks for Realtime Multimedia Applications- Reuse of Virtual Circuits

Routing places an important role in determining the quality of service in wireless networks. The routing methods adopted in wireless networks have many drawbacks. This paper aims to review the current routing methods used in wireless networks. This paper proposes an innovative solution to overcome the problems in routing. This solution is aimed at improving the Quality of Service. This solution is different from others as it involves the resuage of the part of the virtual circuits. This improvement in quality of service is important especially in propagation of multimedia applications like video, animations etc. So it is the dire need to propose a new solution to improve the quality of service in ATM wireless networks for multimedia applications especially during this era of multimedia based applications.

Human Motion Regeneration in 2-Dimension as Stick Figure Animation with Accelerometers

This paper explores the opportunity of using tri-axial wireless accelerometers for supervised monitoring of sports movements. A motion analysis system for the upper extremities of lawn bowlers in particular is developed. Accelerometers are placed on parts of human body such as the chest to represent the shoulder movements, the back to capture the trunk motion, back of the hand, the wrist and one above the elbow, to capture arm movements. These sensors placement are carefully designed in order to avoid restricting bowler-s movements. Data is acquired from these sensors in soft-real time using virtual instrumentation; the acquired data is then conditioned and converted into required parameters for motion regeneration. A user interface was also created to facilitate in the acquisition of data, and broadcasting of commands to the wireless accelerometers. All motion regeneration in this paper deals with the motion of the human body segment in the X and Y direction, looking into the motion of the anterior/ posterior and lateral directions respectively.

Matrix-Interleaved Serially Concatenated Block Codes for Speech Transmission in Fixed Wireless Communication Systems

In this paper, we study a class of serially concatenated block codes (SCBC) based on matrix interleavers, to be employed in fixed wireless communication systems. The performances of SCBC¬coded systems are investigated under various interleaver dimensions. Numerical results reveal that the matrix interleaver could be a competitive candidate over conventional block interleaver for frame lengths of 200 bits; hence, the SCBC coding based on matrix interleaver is a promising technique to be employed for speech transmission applications in many international standards such as pan-European Global System for Mobile communications (GSM), Digital Cellular Systems (DCS) 1800, and Joint Detection Code Division Multiple Access (JD-CDMA) mobile radio systems, where the speech frame contains around 200 bits.

Transmission Performance of Millimeter Wave Multiband OFDM UWB Wireless Signal over Fiber System

Performance of millimeter-wave (mm-wave) multiband orthogonal frequency division multiplexing (MB-OFDM) ultrawideband (UWB) signal generation using frequency quadrupling technique and transmission over fiber is experimentally investigated. The frequency quadrupling is achived by using only one Mach- Zehnder modulator (MZM) that is biased at maximum transmission (MATB) point. At the output, a frequency quadrupling signal is obtained then sent to a second MZM. This MZM is used for MBOFDM UWB signal modulation. In this work, we demonstrate 30- GHz mm-wave wireless that carries three-bands OFDM UWB signals, and error vector magnitude (EVM) is used to analyze the transmission quality. It is found that our proposed technique leads to an improvement of 3.5 dB in EVM at 40% of local oscillator (LO) modulation with comparison to the technique using two cascaded MZMs biased at minimum transmission (MITB) point.

Analysis of Delay and Throughput in MANET for DSR Protocol

A wireless Ad-hoc network consists of wireless nodes communicating without the need for a centralized administration, in which all nodes potentially contribute to the routing process.In this paper, we report the simulation results of four different scenarios for wireless ad hoc networks having thirty nodes. The performances of proposed networks are evaluated in terms of number of hops per route, delay and throughput with the help of OPNET simulator. Channel speed 1 Mbps and simulation time 600 sim-seconds were taken for all scenarios. For the above analysis DSR routing protocols has been used. The throughput obtained from the above analysis (four scenario) are compared as shown in Figure 3. The average media access delay at node_20 for two routes and at node_20 for four different scenario are compared as shown in Figures 4 and 5. It is observed that the throughput will degrade when it will follow different hops for same source to destination (i.e. it has dropped from 1.55 Mbps to 1.43 Mbps which is around 9.7%, and then dropped to 0.48Mbps which is around 35%).

Performance Analysis of MIMO Based Multi-User Cooperation Diversity Over Various Fading Channels

In this paper, hybrid FDMA-TDMA access technique in a cooperative distributive fashion introducing and implementing a modified protocol introduced in [1] is analyzed termed as Power and Cooperation Diversity Gain Protocol (PCDGP). A wireless network consists of two users terminal , two relays and a destination terminal equipped with two antennas. The relays are operating in amplify-and-forward (AF) mode with a fixed gain. Two operating modes: cooperation-gain mode and powergain mode are exploited from source terminals to relays, as it is working in a best channel selection scheme. Vertical BLAST (Bell Laboratories Layered Space Time) or V-BLAST with minimum mean square error (MMSE) nulling is used at the relays to perfectly detect the joint signals from multiple source terminals. The performance is analyzed using binary phase shift keying (BPSK) modulation scheme and investigated over independent and identical (i.i.d) Rayleigh, Ricean-K and Nakagami-m fading environments. Subsequently, simulation results show that the proposed scheme can provide better signal quality of uplink users in a cooperative communication system using hybrid FDMATDMA technique.

An Innovative Approach to the Formulation of Connection Admission Control Problem

This paper proposes an innovative approach for the Connection Admission Control (CAC) problem. Starting from an abstract network modelling, the CAC problem is formulated in a technology independent fashion allowing the proposed concepts to be applied to any wireless and wired domain. The proposed CAC is decoupled from the other Resource Management procedures, but cooperates with them in order to guarantee the desired QoS requirements. Moreover, it is based on suitable performance measurements which, by using proper predictors, allow to forecast the domain dynamics in the next future. Finally, the proposed CAC control scheme is based on a feedback loop aiming at maximizing a suitable performance index accounting for the domain throughput, whilst respecting a set of constraints accounting for the QoS requirements.