Enhancing Visual Basic GUI Applications using VRML Scenes

Rapid Application Development (RAD) enables ever expanding needs for speedy development of computer application programs that are sophisticated, reliable, and full-featured. Visual Basic was the first RAD tool for the Windows operating system, and too many people say still it is the best. To provide very good attraction in visual basic 6 applications, this paper directing to use VRML scenes over the visual basic environment.

Exergy Analysis of a Solar Humidification- Dehumidification Desalination Unit

This paper presents the exergy analysis of a desalination unit using humidification-dehumidification process. Here, this unit is considered as a thermal system with three main components, which are the heating unit by using a solar collector, the evaporator or the humidifier, and the condenser or the dehumidifier. In these components the exergy is a measure of the quality or grade of energy and it can be destroyed in them. According to the second law of thermodynamics this destroyed part is due to irreversibilities which must be determined to obtain the exergetic efficiency of the system. In the current paper a computer program has been developed using visual basic to determine the exergy destruction and the exergetic efficiencies of the components of the desalination unit at variable operation conditions such as feed water temperature, outlet air temperature, air to feed water mass ratio and salinity, in addition to cooling water mass flow rate and inlet temperature, as well as quantity of solar irradiance. The results obtained indicate that the exergy efficiency of the humidifier increases by increasing the mass ratio and decreasing the outlet air temperature. In the other hand the exergy efficiency of the condenser increases with the increase of this ratio and also with the increase of the outlet air temperature.

A Software for Calculation of Optimum Conditions for Cotton Bobbin Drying in a Hot-Air Bobbin Dryer

In this study, a software has been developed to predict the optimum conditions for drying of cotton based yarn bobbins in a hot air dryer. For this purpose, firstly, a suitable drying model has been specified using experimental drying behavior for different values of drying parameters. Drying parameters in the experiments were drying temperature, drying pressure, and volumetric flow rate of drying air. After obtaining a suitable drying model, additional curve fittings have been performed to obtain equations for drying time and energy consumption taking into account the effects of drying parameters. Then, a software has been developed using Visual Basic programming language to predict the optimum drying conditions for drying time and energy consumption.