Numerical Analysis of the SIR-SI Differential Equations with Application to Dengue Disease Mapping in Kuala Lumpur, Malaysia

The main aim of this study is to describe and introduce a method of numerical analysis in obtaining approximate solutions for the SIR-SI differential equations (susceptible-infectiverecovered for human populations; susceptible-infective for vector populations) that represent a model for dengue disease transmission. Firstly, we describe the ordinary differential equations for the SIR-SI disease transmission models. Then, we introduce the numerical analysis of solutions of this continuous time, discrete space SIR-SI model by simplifying the continuous time scale to a densely populated, discrete time scale. This is followed by the application of this numerical analysis of solutions of the SIR-SI differential equations to the estimation of relative risk using continuous time, discrete space dengue data of Kuala Lumpur, Malaysia. Finally, we present the results of the analysis, comparing and displaying the results in graphs, table and maps. Results of the numerical analysis of solutions that we implemented offers a useful and potentially superior model for estimating relative risks based on continuous time, discrete space data for vector borne infectious diseases specifically for dengue disease. 

Effect of Oxygen and Micro-Cracking on the Flotation of Low Grade Nickel Sulphide Ore

This study investigated the effect of oxygen and micro-cracking on the flotation of low grade nickel sulphide ore. The ore treated contained serpentine minerals which have a history of being difficult to process efficiently. The use of oxygen as a bubbling gas has been noted to be effective because it increases the pulp potential. The desired effect of micro cracking the ore is that the nickel sulphide minerals will become activated and this activation will render these minerals more susceptible to react with potassium amyl xanthate collectors, resulting in a higher recovery of nickel and hinder the recovery of other undesired minerals contained in the ore. Higher nickel recoveries were obtained when pure oxygen was used as a bubbling gas rather than the conventional air. Microwave cracking favored the recovery of nickel.

Mathematical Model for the Transmission of Two Plasmodium Malaria

Malaria is transmitted to the human by biting of infected Anopheles mosquitoes. This disease is a serious, acute and chronic relapsing infection to humans. Fever, nausea, vomiting, back pain, increased sweating anemia and splenomegaly (enlargement of the spleen) are the symptoms of the patients who infected with this disease. It is caused by the multiplication of protozoa parasite of the genus Plasmodium. Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium ovale are the four types of Plasmodium malaria. A mathematical model for the transmission of Plasmodium Malaria is developed in which the human and vector population are divided into two classes, the susceptible and the infectious classes. In this paper, we formulate the dynamical model of Plasmodium falciparum and Plasmodium vivax malaria. The standard dynamical analysis is used for analyzing the behavior for the transmission of this disease. The Threshold condition is found and numerical results are shown to confirm the analytical results.

Economic Assessment of Green House for Cultivation of Float Based Seedling Production in India

In conventional seedling production, the seedlings are being grown in the open field under natural conditions. Here they are susceptible to sudden changes in climate were their quality and yield is affected. Quality seedlings are essential for good growth and performance of crops in main field; they serve as a foundation for the economic returns to the farmer. Producing quality seedling demands usage of hybrid seeds as they have the ability to result in better yield, greater uniformity, improved color, disease resistance, and so forth. Hybrid seed production poses major operational challenge and its seed use efficiency plays an important role. Thus in order to overcome the difficulties currently present in conventional seedling production and to efficiently use hybrid seeds, ITC Limited Agri Business Divisions - Sustainability Cell as conceptualized a novel method of seedling production unit for farmers in West Godavari District of Andhra Pradesh. The “Green House based Float Seedling" methodology aims at a protected cultivation technique wherein the micro climate surrounding the plant/seedling body is controlled partially or fully as per the requirement of the species. This paper reports on the techno economic evaluation of green house for cultivation of float based seedling production with experimental results that was attained from the pilot implementation in West Godavari District, Rajahmundry region of India.

Effect of the Seasonal Variation in the Extrinsic Incubation Period on the Long Term Behavior of the Dengue Hemorrhagic Fever Epidemic

The incidences of dengue hemorrhagic disease (DHF) over the long term exhibit a seasonal behavior. It has been hypothesized that these behaviors are due to the seasonal climate changes which in turn induce a seasonal variation in the incubation period of the virus while it is developing the mosquito. The standard dynamic analysis is applied for analysis the Susceptible-Exposed- Infectious-Recovered (SEIR) model which includes an annual variation in the length of the extrinsic incubation period (EIP). The presence of both asymptomatic and symptomatic infections is allowed in the present model. We found that dynamic behavior of the endemic state changes as the influence of the seasonal variation of the EIP becomes stronger. As the influence is further increased, the trajectory exhibits sustained oscillations when it leaves the chaotic region.

The Same or Not the Same - On the Variety of Mechanisms of Path Dependence

In association with path dependence, researchers often talk of institutional “lock-in", thereby indicating that far-reaching path deviation or path departure are to be regarded as exceptional cases. This article submits the alleged general inclination for stability of path-dependent processes to a critical review. The different reasons for path dependence found in the literature indicate that different continuity-ensuring mechanisms are at work when people talk about path dependence (“increasing returns", complementarity, sequences etc.). As these mechanisms are susceptible to fundamental change in different ways and to different degrees, the path dependence concept alone is of only limited explanatory value. It is therefore indispensable to identify the underlying continuity-ensuring mechanism as well if a statement-s empirical value is to go beyond the trivial, always true “history matters".

A Review on Natural Fibre Reinforced Polymer Composites

Renewable natural fibres such as oil palm, flax, and pineapple leaf can be utilized to obtain new high performance polymer materials. The reuse of waste natural fibres as reinforcement for polymer is a sustainable option to the environment. However, due to its high hydroxyl content of cellulose, natural fibres are susceptible to absorb water that affects the composite mechanical properties adversely. Research found that Nano materials such as Nano Silica Carbide (n-SiC) and Nano Clay can be added into the polymer composite to overcome this problem by enhancing its mechanical properties in wet condition. The addition of Nano material improves the tensile and wear properties, flexural stressstrain behaviour, fracture toughness, and fracture strength of polymer natural composites in wet and dry conditions.

Numerical Simulation of Cavitation and Aeration in Discharge Gated Tunnel of a Dam Based on the VOF Method

Cavitation, usually known as a destructive phenomenon, involves turbulent unsteady two-phase flow. Having such features, cavitating flows have been turned to a challenging topic in numerical studies and many researches are being done for better understanding of bubbly flows and proposing solutions to reduce its consequent destructive effects. Aeration may be regarded as an effective protection against cavitation erosion in many hydraulic structures, like gated tunnels. The paper concerns numerical simulation of flow in discharge gated tunnel of a dam using ing RNG k -ε model coupled with the volume of fluid (VOF) method and the zone which is susceptible of cavitation inception in the tunnel is predicted. In the second step, a vent is considered in the mentioned zone for aeration and the numerical simulation is done again to study the effects of aeration. The results show that aeration is an impressively useful method to exclude cavitation in mentioned tunnels.

Identification of Industrial Health Using ANN

The customary practice of identifying industrial sickness is a set traditional techniques which rely upon a range of manual monitoring and compilation of financial records. It makes the process tedious, time consuming and often are susceptible to manipulation. Therefore, certain readily available tools are required which can deal with such uncertain situations arising out of industrial sickness. It is more significant for a country like India where the fruits of development are rarely equally distributed. In this paper, we propose an approach based on Artificial Neural Network (ANN) to deal with industrial sickness with specific focus on a few such units taken from a less developed north-east (NE) Indian state like Assam. The proposed system provides decision regarding industrial sickness using eight different parameters which are directly related to the stages of sickness of such units. The mechanism primarily uses certain signals and symptoms of industrial health to decide upon the state of a unit. Specifically, we formulate an ANN based block with data obtained from a few selected units of Assam so that required decisions related to industrial health could be taken. The system thus formulated could become an important part of planning and development. It can also contribute towards computerization of decision support systems related to industrial health and help in better management.

The Effect of Simulated Acid Rain on Glycine max

Acid rain occurs when sulphur dioxide (SO2) and nitrogen oxides (Nox) gases react in the atmosphere with water, oxygen, and other chemicals to form various acidic compounds. The result is a mild solution of sulfuric acid and nitric acid. Soil has a greater buffering capacity than aquatic systems. However excessive amount of acids introduced by acid rains may disturb the entire soil chemistry. Acidity and harmful action of toxic elements damage vegetation while susceptible microbial species are eliminated. In present study, the effects of simulated sulphuric acid and nitric acid rains were investigated on crop Glycine max. The effect of acid rain on change in soil fertility was detected in which pH of control sample was 6.5 and pH of 1%H2SO4 and 1%HNO3 were 3.5. Nitrogen nitrate in soil was high in 1% HNO3 treated soil & Control sample. Ammonium nitrogen in soil was low in 1% HNO3 & H2SO4 treated soil. Ammonium nitrogen was medium in control and other samples. The effect of acid rain on seed germination on 3rd day of germination control sample growth was 7 cm, 0.1% HNO3 was 8cm, and 0.001% HNO3 & 0.001% H2SO4 was 6cm each. On 10th day fungal growth was observed in 1% and 0.1%H2SO4 concentrations, when all plants were dead. The effect of acid rain on crop productivity was investigated on 3rd day roots were developed in plants. On12th day Glycine max showed more growth in 0.1% HNO3, 0.001% HNO3 and 0.001% H2SO4 treated plants growth were same as compare to control plants. On 20th day development of discoloration of plant pigments were observed on acid treated plants leaves. On 38th day, 0.1, 0.001% HNO3 and 0.1, 0.001% H2SO4 treated plants and control plants were showing flower growth. On 42th day, acid treated Glycine max variety and control plants were showed seeds on plants. In Glycine max variety 0.1, 0.001% H2SO4, 0.1, 0.001% HNO3 treated plants were dead on 46th day and fungal growth was observed. The toxicological study was carried out on Glycine max plants exposed to 1% HNO3 cells were damaged more than 1% H2SO4. Leaf sections exposed to 0.001% HNO3 & H2SO4 showed less damaged of cells and pigmentation observed in entire slide when compare with control plant. The soil analysis was done to find microorganisms in HNO3 & H2SO4 treated Glycine max and control plants. No microorganism growth was observed in 1% HNO3 & H2SO4 but control plant showed microbial growth.

Effect of Tempering Temperature and Time on the Corrosion Behaviour of 304 and 316 Austenitic Stainless Steels in Oxalic Acid

The effect of different tempering temperatures and heat treatment times on the corrosion resistance of austenitic stainless steels in oxalic acid was studied in this work using conventional weight loss and electrochemical measurements. Typical 304 and 316 stainless steel samples were tempered at 150oC, 250oC and 350oC after being austenized at 1050oC for 10 minutes. These samples were then immersed in 1.0M oxalic acid and their weight losses were measured at every five days for 30 days. The results show that corrosion of both types of ASS samples increased with an increase in tempering temperature and time and this was due to the precipitation of chromium carbides at the grain boundaries of these metals. Electrochemical results also confirm that the 304 ASS is more susceptible to corrosion than 316 ASS in this medium. This is attributed to the molybdenum in the composition of the latter. The metallographic images of these samples showed non–uniform distribution of precipitated chromium carbides at the grain boundaries of these metals and unevenly distributed carbides and retained austenite phases which cause galvanic effects in the medium.

3D Star Skeleton for Fast Human Posture Representation

In this paper, we propose an improved 3D star skeleton technique, which is a suitable skeletonization for human posture representation and reflects the 3D information of human posture. Moreover, the proposed technique is simple and then can be performed in real-time. The existing skeleton construction techniques, such as distance transformation, Voronoi diagram, and thinning, focus on the precision of skeleton information. Therefore, those techniques are not applicable to real-time posture recognition since they are computationally expensive and highly susceptible to noise of boundary. Although a 2D star skeleton was proposed to complement these problems, it also has some limitations to describe the 3D information of the posture. To represent human posture effectively, the constructed skeleton should consider the 3D information of posture. The proposed 3D star skeleton contains 3D data of human, and focuses on human action and posture recognition. Our 3D star skeleton uses the 8 projection maps which have 2D silhouette information and depth data of human surface. And the extremal points can be extracted as the features of 3D star skeleton, without searching whole boundary of object. Therefore, on execution time, our 3D star skeleton is faster than the “greedy" 3D star skeleton using the whole boundary points on the surface. Moreover, our method can offer more accurate skeleton of posture than the existing star skeleton since the 3D data for the object is concerned. Additionally, we make a codebook, a collection of representative 3D star skeletons about 7 postures, to recognize what posture of constructed skeleton is.

Swine Flu Transmission Model in Risk and Non-Risk Human Population

The Swine flu outbreak in humans is due to a new strain of influenza A virus subtype H1N1 that derives in part from human influenza, avian influenza, and two separated strains of swine influenza. It can be transmitted from human to human. A mathematical model for the transmission of Swine flu is developed in which the human populations are divided into two classes, the risk and non-risk human classes. Each class is separated into susceptible, exposed, infectious, quarantine and recovered sub-classes. In this paper, we formulate the dynamical model of Swine flu transmission and the repetitive contacts between the people are also considered. We analyze the behavior for the transmission of this disease. The Threshold condition of this disease is found and numerical results are shown to confirm our theoretical predictions.

Population Trend of Canola Aphid, Lipaphis Erysimi (Kalt.) (Homoptera: Aphididae) and its Associated Natural Enemies in Different Brassica Lines along with the Effect of Gamma Radiation on Their Population

Studies regarding the determination of population trend of Lipaphis erysimi (kalt.) and its associated natural enemies in different Brassica lines along with the effect of gamma radiation on their population were conducted at Agricultural Research Farm, Malakandher, Khyber Pakhtunkhwa Agricultural University Peshawar during spring 2006. Three different Brassica lines F6B3, F6B6 and F6B7 were used, which were replicated four times in Randomized Complete Block Design. The data revealed that aphid infestation invariably stated in all three varieties during last week of February 2006 (1st observation). The peak population of 4.39 aphids leaf-1 was s recorded during 2nd week of March and lowest population of 1.02 aphids leaf-1 was recorded during 5th week of March. The species of lady bird beetle (Coccinella septempunctata) and Syrphid fly (Syrphus balteatus) first appeared on 24th February with a mean number of 0.40 lady bird beetle leaf-1 and 0.87 Syrphid fly leaf-1, respectively. At the time when aphid population started to increase the peak population of C. septempunctata (0.70 lady bird beetle leaf- 1) and S. balteatus (1.04 syrphid fly leaf-1) was recorded on the 2nd week of March. Chrysoperla carnea appeared in the 1st week of March and their peak population was recorded during the 3rd week of March with mean population of 1.46 C. carnea leaf-1. Among all the Brassica lines, F6B7 showed comparatively more resistance as compared to F6B3 F6B6. F6B3 showed least resistance against L. erysimi, which was found to be the most susceptible cultivar. F6B7 was also found superior in terms of natural enemies. Maximum number of all natural enemies was recorded on this variety followed by F6B6. Lowest number of natural enemies was recorded in F6B3. No significant effect was recorded for the effect of gamma radiation on the population of aphids, natural enemies and on the varieties.

Time Domain and Frequency Domain Analyses of Measured Metocean Data for Malaysian Waters

Data of wave height and wind speed were collected from three existing oil fields in South China Sea – offshore Peninsular Malaysia, Sarawak and Sabah regions. Extreme values and other significant data were employed for analysis. The data were recorded from 1999 until 2008. The results show that offshore structures are susceptible to unacceptable motions initiated by wind and waves with worst structural impacts caused by extreme wave heights. To protect offshore structures from damage, there is a need to quantify descriptive statistics and determine spectra envelope of wind speed and wave height, and to ascertain the frequency content of each spectrum for offshore structures in the South China Sea shallow waters using measured time series. The results indicate that the process is nonstationary; it is converted to stationary process by first differencing the time series. For descriptive statistical analysis, both wind speed and wave height have significant influence on the offshore structure during the northeast monsoon with high mean wind speed of 13.5195 knots ( = 6.3566 knots) and the high mean wave height of 2.3597 m ( = 0.8690 m). Through observation of the spectra, there is no clear dominant peak and the peaks fluctuate randomly. Each wind speed spectrum and wave height spectrum has its individual identifiable pattern. The wind speed spectrum tends to grow gradually at the lower frequency range and increasing till it doubles at the higher frequency range with the mean peak frequency range of 0.4104 Hz to 0.4721 Hz, while the wave height tends to grow drastically at the low frequency range, which then fluctuates and decreases slightly at the high frequency range with the mean peak frequency range of 0.2911 Hz to 0.3425 Hz.

Spatial Correlation Analysis between Climate Factors and Plant Production in Asia

Using 1km grid datasets representing monthly mean precipitation, monthly mean temperature, and dry matter production (DMP), we considered the regional plant production ability in Southeast and South Asia, and also employed pixel-by-pixel correlation analysis to assess the intensity of relation between climate factors and plant production. While annual DMP in South Asia was approximately less than 2,000kg, the one in most part of Southeast Asia exceeded 2,500 - 3,000kg. It suggested that plant production in Southeast Asia was superior to South Asia, however, Rain-Use Efficiency (RUE) representing dry matter production per 1mm precipitation showed that inland of Indochina Peninsula and India were higher than islands in Southeast Asia. By the results of correlation analysis between climate factors and DMP, while the area in most parts of Indochina Peninsula indicated negative correlation coefficients between DMP and precipitation or temperature, the area in Malay Peninsula and islands showed negative correlation to precipitation and positive one to temperature, and most part of India dominating South Asia showed positive to precipitation and negative to temperature. In addition, the areas where the correlation coefficients exceeded |0.8| were regarded as “susceptible" to climate factors, and the areas smaller than |0.2| were “insusceptible". By following the discrimination, the map implying expected impacts by climate change was provided.

Variant Polymorphisms of GST and XRCC Genes and the Early Risk of Age Associated Disease in Kazakhstan

It is believed that DNA damaging toxic metabolites contributes to the development of different pathological conditions. To prevent harmful influence of toxic agents, cells developed number of protecting mechanisms, such as enzymatic reaction of detoxification of reactive metabolites and repair of DNA damage. The aim of the study was to examine the association between polymorphism of GSTT1/GSTM1 and XRCC1/3 genes and coronary artery disease (CAD) incidence. To examine a polymorphism of these genes in CAD susceptibility in patients and controls, PCR based genotyping assay was performed. For GST genes, frequency of GSTM1 null genotype among CAD affected group was significantly increased than in control group (P0.1). We found that neither XRCC1 Arg399Gln nor XRCC3 Thr241Met were associated with CAD risk. Obtained data suggests that GSTM1 null genotype carriers are more susceptible to CAD development.

The Contribution of Growth Rate to the Pathogenicity of Candida spp.

Fungal infections are becoming more common and the range of susceptible individuals has expanded. While Candida albicans remains the most common infective species, other Candida spp. are becoming increasingly significant. In a range of large-scale studies of candidaemia between 1999 and 2006, about 52% of 9717 cases involved C. albicans, about 30% involved either C. glabrata or C. parapsilosis and less than 15% involved C. tropicalis, C. krusei or C. guilliermondii. However, the probability of mortality within 30 days of infection with a particular species was at least 40% for C. tropicalis, C. albicans, C. glabrata and C. krusei and only 22% for C. parapsilopsis. Clinical isolates of Candida spp. grew at rates ranging from 1.65 h-1 to 4.9 h-1. Three species (C. krusei, C. albicans and C. glabrata) had relatively high growth rates (μm > 4 h-1), C. tropicalis and C. dubliniensis grew moderately quickly (Ôëê 3 h-1) and C. parapsilosis and C. guilliermondii grew slowly (< 2 h-1). Based on these data, the log of the odds of mortality within 30 days of diagnosis was linearly related to μm. From this the underlying probability of mortality is 0.13 (95% CI: 0.10-0.17) and it increases by about 0.09 ± 0.02 for each unit increase in μm. Given that the overall crude mortality is about 0.36, the growth of Candida spp. approximately doubles the rate, consistent with the results of larger case-matched studies of candidaemia.

Designing a Fuzzy Logic Controller to Enhance Directional Stability of Vehicles under Difficult Maneuvers

Vehicle which are turning or maneuvering at high speeds are susceptible to sliding and subsequently deviate from desired path. In this paper the dynamics governing the Yaw/Roll behavior of a vehicle has been simulated. Two different simulations have been used one for the real vehicle, for which a fuzzy controller is designed to increase its directional stability property. The other simulation is for a hypothetical vehicle with much higher tire cornering stiffness which is capable of developing the required lateral forces at the tire-ground patch contact to attain the desired lateral acceleration for the vehicle to follow the desired path without slippage. This simulation model is our reference model. The logic for keeping the vehicle on the desired track in the cornering or maneuvering state is to have some braking forces on the inner or outer tires based on the direction of vehicle deviation from the desired path. The inputs to our vehicle simulation model is steer angle δ and vehicle velocity V , and the outputs can be any kinematical parameters like yaw rate, yaw acceleration, side slip angle, rate of side slip angle and so on. The proposed fuzzy controller is a feed forward controller. This controller has two inputs which are steer angle δ and vehicle velocity V, and the output of the controller is the correcting moment M, which guides the vehicle back to the desired track. To develop the membership functions for the controller inputs and output and the fuzzy rules, the vehicle simulation has been run for 1000 times and the correcting moment have been determined by trial and error. Results of the vehicle simulation with fuzzy controller are very promising and show the vehicle performance is enhanced greatly over the vehicle without the controller. In fact the vehicle performance with the controller is very near the performance of the reference ideal model.

Mathematical Model of Dengue Disease with the Incubation Period of Virus

Dengue virus is transmitted from person to person through the biting of infected Aedes Aegypti mosquitoes. DEN-1, DEN-2, DEN-3 and DEN-4 are four serotypes of this virus. Infection with one of these four serotypes apparently produces permanent immunity to it, but only temporary cross immunity to the others. The length of time during incubation of dengue virus in human and mosquito are considered in this study. The dengue patients are classified into infected and infectious classes. The infectious human can transmit dengue virus to susceptible mosquitoes but infected human can not. The transmission model of this disease is formulated. The human population is divided into susceptible, infected, infectious and recovered classes. The mosquito population is separated into susceptible, infected and infectious classes. Only infectious mosquitoes can transmit dengue virus to the susceptible human. We analyze this model by using dynamical analysis method. The threshold condition is discussed to reduce the outbreak of this disease.