Advanced Numerical and Analytical Methods for Assessing Concrete Sewers and Their Remaining Service Life

Pipelines are extensively used engineering structures which convey fluid from one place to another. Most of the time, pipelines are placed underground and are encumbered by soil weight and traffic loads. Corrosion of pipe material is the most common form of pipeline deterioration and should be considered in both the strength and serviceability analysis of pipes. The study in this research focuses on concrete pipes in sewage systems (concrete sewers). This research firstly investigates how to involve the effect of corrosion as a time dependent process of deterioration in the structural and failure analysis of this type of pipe. Then three probabilistic time dependent reliability analysis methods including the first passage probability theory, the gamma distributed degradation model and the Monte Carlo simulation technique are discussed and developed. Sensitivity analysis indexes which can be used to identify the most important parameters that affect pipe failure are also discussed. The reliability analysis methods developed in this paper contribute as rational tools for decision makers with regard to the strengthening and rehabilitation of existing pipelines. The results can be used to obtain a cost-effective strategy for the management of the sewer system.

A Simulation-Optimization Approach to Control Production, Subcontracting and Maintenance Decisions for a Deteriorating Production System

This research studies the joint production, maintenance and subcontracting control policy for an unreliable deteriorating manufacturing system. Production activities are controlled by a derivation of the Hedging Point Policy, and given that the system is subject to deterioration, it reduces progressively its capacity to satisfy product demand. Multiple deterioration effects are considered, reflected mainly in the quality of the parts produced and the reliability of the machine. Subcontracting is available as support to satisfy product demand; also, overhaul maintenance can be conducted to reduce the effects of deterioration. The main objective of the research is to determine simultaneously the production, maintenance and subcontracting rate, which minimize the total, incurred cost. A stochastic dynamic programming model is developed and solved through a simulation-based approach composed of statistical analysis and optimization with the response surface methodology. The obtained results highlight the strong interactions between production, deterioration and quality, which justify the development of an integrated model. A numerical example and a sensitivity analysis are presented to validate our results.

Double Manifold Sliding Mode Observer for Sensorless Control of Multiphase Induction Machine under Fault Condition

Multiphase Induction Machine (IM) is normally controlled using rotor field oriented vector control. Under phase(s) loss, the machine currents can be optimally controlled to satisfy certain optimization criteria. In this paper we discuss the performance of double manifold sliding mode observer (DM-SMO) in Sensorless control of multiphase induction machine under unsymmetrical condition (one phase loss). This observer is developed using the IM model in the stationary reference frame. DM-SMO is constructed by adding extra feedback term to conventional single mode sliding mode observer (SM-SMO) which proposed in many literature. This leads to a fully convergent observer that also yields an accurate estimate of the speed and stator currents. It will be shown by the simulation results that the estimated speed and currents by the method are very well and error between real and estimated quantities is negligible. Also parameter sensitivity analysis shows that this method is rather robust against parameter variation.

Modeling Aeration of Sharp Crested Weirs by Using Support Vector Machines

The present paper attempts to investigate the prediction of air entrainment rate and aeration efficiency of a free overfall jets issuing from a triangular sharp crested weir by using regression based modelling. The empirical equations, Support vector machine (polynomial and radial basis function) models and the linear regression techniques were applied on the triangular sharp crested weirs relating the air entrainment rate and the aeration efficiency to the input parameters namely drop height, discharge, and vertex angle. It was observed that there exists a good agreement between the measured values and the values obtained using empirical equations, Support vector machine (Polynomial and rbf) models and the linear regression techniques. The test results demonstrated that the SVM based (Poly & rbf) model also provided acceptable prediction of the measured values with reasonable accuracy along with empirical equations and linear regression techniques in modelling the air entrainment rate and the aeration efficiency of a free overfall jets issuing from triangular sharp crested weir. Further sensitivity analysis has also been performed to study the impact of input parameter on the output in terms of air entrainment rate and aeration efficiency.

The Impact of the European Single Market on the Austrian Economy under Alternative Assumptions about Global and National Policy Reactions

In this paper, we explore the macroeconomic effects of the European Single Market on Austria by simulating the McKibbin-Sachs Global Model. Global interdependences and the impact of long-run effects on short-run adjustments are taken into account. We study the sensitivity of the results with respect to different assumptions concerning monetary and fiscal policies for the countries and regions of the world economy. The consequences of different assumptions about budgetary policies in Austria are also investigated. The simulation results are contrasted with ex-post evaluations of the actual impact of Austria’s membership in the Single Market. As a result, it can be concluded that the Austrian participation in the European Single Market entails considerable long-run gains for the Austrian economy with nearly no adverse sideeffects on any macroeconomic target variable.

Life Cycle Assessment of Residential Buildings: A Case Study in Canada

Residential buildings consume significant amounts of energy and produce large amount of emissions and waste. However, there is a substantial potential for energy savings in this sector which needs to be evaluated over the life cycle of residential buildings. Life Cycle Assessment (LCA) methodology has been employed to study the primary energy uses and associated environmental impacts of different phases (i.e., product, construction, use, end of life, and beyond building life) for residential buildings. Four different alternatives of residential buildings in Vancouver (BC, Canada) with a 50-year lifespan have been evaluated, including High Rise Apartment (HRA), Low Rise Apartment (LRA), Single family Attached House (SAH), and Single family Detached House (SDH). Life cycle performance of the buildings is evaluated for embodied energy, embodied environmental impacts, operational energy, operational environmental impacts, total life-cycle energy, and total life cycle environmental impacts. Estimation of operational energy and LCA are performed using DesignBuilder software and Athena Impact estimator software respectively. The study results revealed that over the life span of the buildings, the relationship between the energy use and the environmental impacts are identical. LRA is found to be the best alternative in terms of embodied energy use and embodied environmental impacts; while, HRA showed the best life-cycle performance in terms of minimum energy use and environmental impacts. Sensitivity analysis has also been carried out to study the influence of building service lifespan over 50, 75, and 100 years on the relative significance of embodied energy and total life cycle energy. The life-cycle energy requirements for SDH are found to be a significant component among the four types of residential buildings. The overall disclose that the primary operations of these buildings accounts for 90% of the total life cycle energy which far outweighs minor differences in embodied effects between the buildings.

Material Parameter Identification of Modified AbdelKarim-Ohno Model

The key role in phenomenological modelling of cyclic plasticity is good understanding of stress-strain behaviour of given material. There are many models describing behaviour of materials using numerous parameters and constants. Combination of individual parameters in those material models significantly determines whether observed and predicted results are in compliance. Parameter identification techniques such as random gradient, genetic algorithm and sensitivity analysis are used for identification of parameters using numerical modelling and simulation. In this paper genetic algorithm and sensitivity analysis are used to study effect of 4 parameters of modified AbdelKarim-Ohno cyclic plasticity model. Results predicted by Finite Element (FE) simulation are compared with experimental data from biaxial ratcheting test with semi-elliptical loading path.

Performance Evaluation of Al Jame’ Roundabout Using SIDRA

This paper evaluates the performance of a multi-lane four legged modern roundabout operating in Muscat using SIDRA model. The performance measures include Degree of Saturation (DOS), average delay, and queue lengths. The geometric and traffic data were used for model preparation. Gap acceptance parameters, critical gap and follow up headway, were used for calibration of SIDRA model. The results from the analysis showed that currently the roundabout is experiencing delays up to 610 seconds per vehicle with DOS 1.67 during peak hour. Further, sensitivity analysis for general and roundabout parameters was performed, amongst lane width, cruise speed, inscribed diameter, entry radius and entry angle showed that inscribed diameter is most crucial factor affecting delay and DOS. Up gradation of roundabout to fully signalized junction was found as the suitable solution which will serve for future years with LOS C for design year having DOS of 0.9 with average control delay of 51.9 seconds per vehicle.

Input-Output Analysis in Laptop Computer Manufacturing

The scope of this paper and the aim of proposed model were to apply monetary Input –Output (I-O) analysis to point out the importance of reusing know-how and other requirements in order to reduce the production costs in a manufacturing process for a laptop computer. I-O approach using the monetary input-output model is employed to demonstrate the impacts of different factors in a manufacturing process. A sensitivity analysis showing the correlation between these different factors is also presented. It is expected that the recommended model would have an advantageous effect in the cost minimization process.

Design and Sensitivity Analysis of Photovoltaic/Thermal Solar Collector

Energy is required in almost every aspect of human activities and development of any nation in the world. Increasing fossil fuel price, energy security and climate change have important bearings on sustainable development of any nation. The renewable energy technology is considered one of the drastic approaches which taken over the world to reduce the energy problem. The preservation of vegetables by freezing is one of the most important methods of retaining quality in agricultural products over long-term storage periods. Freezing factories show high demand of energy for both heat and electricity; the hybrid Photovoltaic/Thermal (PV/T) systems could be used in order to meet this requirement. This paper presents PV/T system design for freezing factory. Also, the complete mathematical modeling and MATLAB SIMULINK of PV/T collector is introduced. The sensitivity analysis for the manufacturing parameters of PV/T collector is carried out to study their effect on both thermal and electrical efficiency.

Sensitivity Analysis of Principal Stresses in Concrete Slab of Rigid Pavement Made From Recycled Materials

Complex sensitivity analysis of stresses in a concrete slab of the real type of rigid pavement made from recycled materials is performed. The computational model of the pavement is designed as a spatial (3D) model, is based on a nonlinear variant of the finite element method that respects the structural nonlinearity, enables to model different arrangements of joints, and the entire model can be loaded by the thermal load. Interaction of adjacent slabs in joints and contact of the slab and the subsequent layer are modeled with the help of special contact elements. Four concrete slabs separated by transverse and longitudinal joints and the additional structural layers and soil to the depth of about 3m are modeled. The thickness of individual layers, physical and mechanical properties of materials, characteristics of joints, and the temperature of the upper and lower surface of slabs are supposed to be random variables. The modern simulation technique Updated Latin Hypercube Sampling with 20 simulations is used. For sensitivity analysis the sensitivity coefficient based on the Spearman rank correlation coefficient is utilized. As a result, the estimates of influence of random variability of individual input variables on the random variability of principal stresses s1 and s3 in 53 points on the upper and lower surface of the concrete slabs are obtained.

Design of Controllers to Control Frequency for Distributed Generation

In this paper a hybrid distributed generation (DG) system connected to isolated load is studied. The DG system consisting of photo voltaic (PV) system, fuel cells, aqua electrolyzer, diesel engine generator and a battery energy storage system. The ambient temperature value of PV is taken as constant to make the output power of PV is directly proportional to the radiation and output power of other DG sources and frequency of the system is controlled by simple integral (I), proportional plus integral (PI), and proportional plus integral and derivative(PID) controllers. A maiden attempt is made to apply a more recent and powerful optimization technique named as bacterial foraging technique for optimization of controllers gains of the proposed hybrid DG system. The system responses with bacterial foraging based controllers are compared with that of classical method. Investigations reveal that bacterial foraging based controllers gives better responses than the classical method and also PID controller is best. Sensitivity analysis is carried out which demonstrates the robustness of the optimized gain values for system loading condition.

Validation of SWAT Model for Prediction of Water Yield and Water Balance: Case Study of Upstream Catchment of Jebba Dam in Nigeria

Estimation of water yield and water balance in a river catchment is critical to the sustainable management of water resources at watershed level in any country. Therefore, in the present study, Soil and Water Assessment Tool (SWAT) interfaced with Geographical Information System (GIS) was applied as a tool to predict water balance and water yield of a catchment area in Nigeria. The catchment area, which was 12,992km2, is located upstream Jebba hydropower dam in North central part of Nigeria. In this study, data on the observed flow were collected and compared with simulated flow using SWAT. The correlation between the two data sets was evaluated using statistical measures, such as, Nasch-Sucliffe Efficiency (NSE) and coefficient of determination (R2). The model output shows a good agreement between the observed flow and simulated flow as indicated by NSE and R2, which were greater than 0.7 for both calibration and validation period. A total of 42,733 mm of water was predicted by the calibrated model as the water yield potential of the basin for a simulation period between 1985 to 2010. This interesting performance obtained with SWAT model suggests that SWAT model could be a promising tool to predict water balance and water yield in sustainable management of water resources. In addition, SWAT could be applied to other water resources in other basins in Nigeria as a decision support tool for sustainable water management in Nigeria.

Investigation of Split TCSC on Kanpur-Ballabhgarh Transmission System

This paper investigates the performance of the single TCSC and proposed split TCSC on transmission system where India’s first TCSC project is installed in Kanpur - Ballabhgarh (KB) line to ensure the fine tuning of line reactance by proposed split TCSC in place of existing KB TCSC. A three phase KB transmission system is developed in MATLAB/Simulink (SimPowerSystems) for without any compensation, with fixed capacitor (FC), with FC + existing KB TCSC and with FC + proposed split TCSC The KB system is analyzed for a step variation of load and performance of the system is investigated with a closed loop reactance control method.

Artificial Intelligent Approach for Machining Titanium Alloy in a Nonconventional Process

Artificial neural networks (ANN) are used in distinct researching fields and professions, and are prepared by cooperation of scientists in different fields such as computer engineering, electronic, structure, biology and so many different branches of science. Many models are built correlating the parameters and the outputs in electrical discharge machining (EDM) concern for different types of materials. Up till now model for Ti-5Al-2.5Sn alloy in the case of electrical discharge machining performance characteristics has not been developed. Therefore, in the present work, it is attempted to generate a model of material removal rate (MRR) for Ti-5Al-2.5Sn material by means of Artificial Neural Network. The experimentation is performed according to the design of experiment (DOE) of response surface methodology (RSM). To generate the DOE four parameters such as peak current, pulse on time, pulse off time and servo voltage and one output as MRR are considered. Ti-5Al-2.5Sn alloy is machined with positive polarity of copper electrode. Finally the developed model is tested with confirmation test. The confirmation test yields an error as within the agreeable limit. To investigate the effect of the parameters on performance sensitivity analysis is also carried out which reveals that the peak current having more effect on EDM performance.

Axisymmetric Nonlinear Analysis of Point Supported Shallow Spherical Shells

Geometrically nonlinear axisymmetric bending of a shallow spherical shell with a point support at the apex under linearly varying axisymmetric load was investigated numerically. The edge of the shell was assumed to be simply supported or clamped. The solution was obtained by the finite difference and the Newton-Raphson methods. The thickness of the shell was considered to be uniform and the material was assumed to be homogeneous and isotropic. Sensitivity analysis was made for two geometrical parameters. The accuracy of the algorithm was checked by comparing the deflection with the solution of point supported circular plates and good agreement was obtained.

A Simple Epidemiological Model for Typhoid with Saturated Incidence Rate and Treatment Effect

Typhoid fever is a communicable disease, found only in man and occurs due to systemic infection mainly by Salmonella typhi organism. The disease is endemic in many developing countries and remains a substantial public health problem despite recent progress in water and sanitation coverage. Globally, it is estimated that typhoid causes over 16 million cases of illness each year, resulting in over 600,000 deaths. A mathematical model for assessing the impact of educational campaigns on controlling the transmission dynamics of typhoid in the community, has been formulated and analyzed. The reproductive number has been computed. Stability of the model steady-states has been examined. The impact of educational campaigns on controlling the transmission dynamics of typhoid has been discussed through the basic reproductive number and numerical simulations. At its best the study suggests that targeted education campaigns, which are effective at stopping transmission of typhoid more than 40% of the time, will be highly effective at controlling the disease in the community. 

Numerical Analysis and Sensitivity Study of Non-Premixed Combustion Using LES

Non-premixed turbulent combustion Computational Fluid Dynamics (CFD) has been carried out in a simplified methanefuelled coaxial jet combustor employing Large Eddy Simulation (LES). The objective of this study is to evaluate the performance of LES in modelling non-premixed combustion using a commercial software, FLUENT, and investigate the effects of the grid density and chemistry models employed on the accuracy of the simulation results. A comparison has also been made between LES and Reynolds Averaged Navier-Stokes (RANS) predictions. For LES grid sensitivity test, 2.3 and 6.2 million cell grids are employed with the equilibrium model. The chemistry model sensitivity analysis is achieved by comparing the simulation results from the equilibrium chemistry and steady flamelet models. The predictions of the mixture fraction, axial velocity, species mass fraction and temperature by LES are in good agreement with the experimental data. The LES results are similar for the two chemistry models but influenced considerably by the grid resolution in the inner flame and near-wall regions.

Sensitivity Analysis in Power Systems Reliability Evaluation

In this paper sensitivity analysis is performed for reliability evaluation of power systems. When examining the reliability of a system, it is useful to recognize how results change as component parameters are varied. This knowledge helps engineers to understand the impact of poor data, and gives insight on how reliability can be improved. For these reasons, a sensitivity analysis can be performed. Finally, a real network was used for testing the presented method.

Classification of Soil Aptness to Establish of Panicum virgatum in Mississippi using Sensitivity Analysis and GIS

During the last decade Panicum virgatum, known as Switchgrass, has been broadly studied because of its remarkable attributes as a substitute pasture and as a functional biofuel source. The objective of this investigation was to establish soil suitability for Switchgrass in the State of Mississippi. A linear weighted additive model was developed to forecast soil suitability. Multicriteria analysis and Sensitivity analysis were utilized to adjust and optimize the model. The model was fit using seven years of field data associated with soils characteristics collected from Natural Resources Conservation System - United States Department of Agriculture (NRCS-USDA). The best model was selected by correlating calculated biomass yield with each model's soils-based output for Switchgrass suitability. Coefficient of determination (r2) was the decisive factor used to establish the 'best' soil suitability model. Coefficients associated with the 'best' model were implemented within a Geographic Information System (GIS) to create a map of relative soil suitability for Switchgrass in Mississippi. A Geodatabase associated with soil parameters was built and is available for future Geographic Information System use.