Abstract: The work is devoted to solving the problem of temperature stresses, caused by the heating point of the round plate. The plate is made of elastoplastic material, so the Prandtl-Reis model is used. A piecewise-linear condition of the Ishlinsky-Ivlev flow is taken as the loading surface, in which the yield stress depends on the temperature. Piecewise-linear conditions (Treska or Ishlinsky-Ivlev), in contrast to the Mises condition, make it possible to obtain solutions of the equilibrium equation in an analytical form. In the problem under consideration, using the conditions of Tresca, it is impossible to obtain a solution. This is due to the fact that the equation of equilibrium ceases to be satisfied when the two Tresca conditions are fulfilled at once. Using the conditions of plastic flow Ishlinsky-Ivlev allows one to solve the problem. At the same time, there are also no solutions on the edge of the Ishlinsky-Ivlev hexagon in the plane-stressed state. Therefore, the authors of the article propose to jump from the edge to the edge of the mine edge, which gives an opportunity to obtain an analytical solution. At the same time, there is also no solution on the edge of the Ishlinsky-Ivlev hexagon in a plane stressed state; therefore, in this paper, the authors of the article propose to jump from the side to the side of the mine edge, which gives an opportunity to receive an analytical solution. The paper compares solutions of the problem of plate thermal deformation. One of the solutions was obtained under the condition that the elastic moduli (Young's modulus, Poisson's ratio) which depend on temperature. The yield point is assumed to be parabolically temperature dependent. The main results of the comparisons are that the region of irreversible deformation is larger in the calculations obtained for solving the problem with constant elastic moduli. There is no repeated plastic flow in the solution of the problem with elastic moduli depending on temperature. The absolute value of the irreversible deformations is higher for the solution of the problem in which the elastic moduli are constant; there are also insignificant differences in the distribution of the residual stresses.
Abstract: Sodium borosilicate glasses doped with different
content of NdF3 mol % have been prepared by rapid quenching
method. Ultrasonic velocities (both longitudinal and shear)
measurements have been carried out at room temperature and at
ultrasonic frequency of 4 MHz. Elastic moduli, Debye temperature,
softening temperature and Poisson's ratio have been obtained as a
function of NdF3 modifier content. Results showed that the elastic
moduli, Debye temperature, softening temperature and Poisson's ratio
have very slight change with the change of NdF3 mol % content.
Based on FTIR spectroscopy and theoretical (Bond compression)
model, quantitative analysis has been carried out in order to obtain
more information about the structure of these glasses. The study
indicated that the structure of these glasses is mainly composed of
SiO4 units with four bridging oxygens (Q4), and with three bridging
and one nonbridging oxygens (Q3).
Abstract: Vickers indentation is used to measure the hardness
of materials. In this study, numerical simulation of Vickers
indentation experiment was performed for Diamond like Carbon
(DLC) coated materials. DLC coatings were deposited on stainless
steel 304 substrates with Chromium buffer layer using RF Magnetron
and T-shape Filtered Cathodic Vacuum Arc Dual system The
objective of this research is to understand the elastic plastic
properties, stress strain distribution, ring and lateral crack growth and
propagation, penetration depth of indenter and delamination of
coating from substrate with effect of buffer layer thickness. The
effect of Poisson-s ratio of DLC coating was also analyzed. Indenter
penetration is more in coated materials with thin buffer layer as
compared to thicker one, under same conditions. Similarly, the
specimens with thinner buffer layer failed quickly due to high
residual stress as compared to the coated materials with reasonable
thickness of 200nm buffer layer. The simulation results suggested the
optimized thickness of 200 nm among the prepared specimens for
durable and long service.