Abstract: China is currently the world's largest producer and distributor of electric bicycle (e-bike). The increasing number of e-bikes on the road is accompanied by rising injuries and even deaths of e-bike drivers. Therefore, there is a growing need to improve the safety structure of e-bikes. This 3D frictionless contact analysis is a preliminary, but necessary work for further structural design improvement of an e-bike. The contact analysis between e-bike and the ground was carried out as follows: firstly, the Penalty method was illustrated and derived from the simplest spring-mass system. This is one of the most common methods to satisfy the frictionless contact case; secondly, ANSYS static analysis was carried out to verify finite element (FE) models with contact pair (without friction) between e-bike and the ground; finally, ANSYS transient analysis was used to obtain the data of the penetration p(u) of e-bike with respect to the ground. Results obtained from the simulation are as estimated by comparing with that from theoretical method. In the future, protective shell will be designed following the stability criteria and added to the frame of e-bike. Simulation of side falling of the improvedsafety structure of e-bike will be confirmed with experimental data.
Abstract: The finite element analysis is adopted in this primary study. Using the Tsai-Wu criterion and delamination criterion, the stacking sequence [45/04/-454/904]s is the final optimal design for the wheelchair frame. On the contrary, the uni-directional laminates, i.e. [9013]s, [4513]s and [-4513]s, are bad designs due to the higher failure indexes.
Abstract: This paper describes analysis of low velocity transverse impact on fully backed sandwich beams with composite faces from Eglass/epoxy and cores from Polyurethane or PVC. Indentation on sandwich beams has been analyzed with the existing theories and modeled with the FE code ABAQUS, also loadings have been done experimentally to verify theoretical results. Impact on fully backed has been modeled in two cases of impactor energy with SDOF model (single-degree-of-freedom) and indentation stiffness: lower energy for elastic indentation of sandwich beams and higher energy for plastic area in indentation. Impacts have been modeled by ABAQUS. Impact results can describe response of beam in terms of core and faces thicknesses, core material, indentor energy and energy absorbed. The foam core is modeled using the crushable foam material model and response of the foam core is experimentally characterized in uniaxial compression with higher velocity loading to define quasi impact behaviour.
Abstract: Using the finite element analyses, this paper discusses the effects of temperature-dependent material properties on the stress and temperature fields in a cracked metal plate under the electric current load. The practical and complicated results are obtained when the temperature-dependent material properties are adopted in the analysis. If the simplified (temperature-independent) material properties are used, incorrect results will be obtained.
Abstract: In this paper delamination phenomenon in
Carbon-Epoxy laminated composite material is investigated
numerically. Arcan apparatus and specimen is modeled in ABAQUS
finite element software for different loading conditions and crack
geometries. The influence of variation of crack geometry on
interlaminar fracture stress intensity factor and energy release rate for
various mixed mode ratios and pure mode I and II was studied. Also,
correction factors for this specimen for different crack length ratios
were calculated. The finite element results indicate that for loading
angles close to pure mode-II loading, a high ratio of mode-II to
mode-I fracture is dominant and there is an opposite trend for loading
angles close to pure mode-I loading. It confirms that by varying the
loading angle of Arcan specimen pure mode-I, pure mode-II and a
wide range of mixed-mode loading conditions can be created and
tested. Also, numerical results confirm that the increase of the mode-
II loading contribution leads to an increase of fracture resistance in
the CF/PEI composite (i.e., a reduction in the total strain energy
release rate) and the increase of the crack length leads to a reduction
of interlaminar fracture resistance in the CF/PEI composite (i.e., an
increase in the total interlaminar strain energy release rate).
Abstract: In this study the behavior of interlaminar fracture of
carbon-epoxy thermoplastic laminated composite is investigated
numerically and experimentally. Tests are performed with Arcan
specimens. Testing with Arcan specimen gives the opportunity of
utilizing just one kind of specimen for extracting fracture properties
for mode I, mode II and different mixed mode ratios of materials with
exerting load via different loading angles. Variation of loading angles
in range of 0-90° made possible to achieve different mixed mode
ratios. Correction factors for various conditions are obtained from
ABAQUS 2D finite element models which demonstrate the finite
shape of Arcan specimens used in this study. Finally, applying the
correction factors to critical loads obtained experimentally, critical
interlaminar fracture toughness of this type of carbon- epoxy
composite has been attained.
Abstract: A subsea hydrocarbon production system can undergo planned and unplanned shutdowns during the life of the field. The thermal FEA is used to simulate the cool down to verify the insulation design of the subsea equipment, but it is also used to derive an acceptable insulation design for the cold spots. The driving factors of subsea analyses require fast responding and accurate models of the equipment cool down. This paper presents cool down analysis carried out by a Krylov subspace reduction method, and compares this approach to the commonly used FEA solvers. The model considered represents a typical component of a subsea production system, a closed valve on a dead leg. The results from the Krylov reduction method exhibits the least error and requires the shortest computational time to reach the solution. These findings make the Krylov model order reduction method very suitable for the above mentioned subsea applications.
Abstract: Composite steel shear wall is a lateral load resisting system which consists of a steel plate with concrete wall attached to one or both sides to prevent it from elastic buckling. The composite behavior is ensured by utilizing high-strength bolts. This paper investigates the effect of distance between bolts, and for this purpose 14 one-story one-bay specimens with various bolts spacing were modeled by finite element code which is developed by the authors. To verify the model, numerical results were compared with a valid experiment which illustrate proper agreement. Results depict increasing the distance between bolts would improve the seismic ever, this increase must be limited, because of large distances will cause widespread buckling of the steel plate in free subpanels between bolts and would result in no improvement. By comparing the results in elastic region, it was observed initial stiffness is not affected by changing the distance.
Abstract: Vickers indentation is used to measure the hardness
of materials. In this study, numerical simulation of Vickers
indentation experiment was performed for Diamond like Carbon
(DLC) coated materials. DLC coatings were deposited on stainless
steel 304 substrates with Chromium buffer layer using RF Magnetron
and T-shape Filtered Cathodic Vacuum Arc Dual system The
objective of this research is to understand the elastic plastic
properties, stress strain distribution, ring and lateral crack growth and
propagation, penetration depth of indenter and delamination of
coating from substrate with effect of buffer layer thickness. The
effect of Poisson-s ratio of DLC coating was also analyzed. Indenter
penetration is more in coated materials with thin buffer layer as
compared to thicker one, under same conditions. Similarly, the
specimens with thinner buffer layer failed quickly due to high
residual stress as compared to the coated materials with reasonable
thickness of 200nm buffer layer. The simulation results suggested the
optimized thickness of 200 nm among the prepared specimens for
durable and long service.
Abstract: To compute dynamic characteristics of nonlinear viscoelastic springs with elastic structures having huge degree-of-freedom, Yamaguchi proposed a new fast numerical method using finite element method [1]-[2]. In this method, restoring forces of the springs are expressed using power series of their elongation. In the expression, nonlinear hysteresis damping is introduced. In this expression, nonlinear complex spring constants are introduced. Finite element for the nonlinear spring having complex coefficients is expressed and is connected to the elastic structures modeled by linear solid finite element. Further, to save computational time, the discrete equations in physical coordinate are transformed into the nonlinear ordinary coupled equations using normal coordinate corresponding to linear natural modes. In this report, the proposed method is applied to simulation for impact responses of a viscoelastic shock absorber with an elastic structure (an S-shaped structure) by colliding with a concentrated mass. The concentrated mass has initial velocities and collides with the shock absorber. Accelerations of the elastic structure and the concentrated mass are measured using Levitation Mass Method proposed by Fujii [3]. The calculated accelerations from the proposed FEM, corresponds to the experimental ones. Moreover, using this method, we also investigate dynamic errors of the S-shaped force transducer due to elastic mode in the S-shaped structure.