Uranium Adsorption Using a Composite Material Based on Platelet SBA-15 Supported Tin Salt Tungstomolybdophosphoric Acid

In this work, a new composite adsorbent based on a mesoporous silica SBA-15 with platelet morphology and tin salt of tungstomolybdophosphoric (TWMP) acid was synthesized and applied for uranium adsorption from aqueous solution. The sample was characterized by X-ray diffraction, Fourier transfer infra-red, and N2 adsorption-desorption analysis, and then, effect of various parameters such as concentration of metal ions and contact time on adsorption behavior was examined. The experimental result showed that the adsorption process was explained by the Langmuir isotherm model very well, and predominant reaction mechanism is physisorption. Kinetic data of adsorption suggest that the adsorption process can be described by the pseudo second-order reaction rate model.

Carbon Nanotubes–A Successful Hydrogen Storage Medium

Hydrogen fuel is a zero-emission fuel which uses electrochemical cells or combustion in internal engines, to power vehicles and electric devices. Methods of   hydrogen storage for subsequent use span many approaches, including high pressures, cryogenics and chemical compounds that reversibly release H2 upon heating. Most research into hydrogen storage is focused on storing hydrogen as a lightweight, compact energy carrier for mobile applications. With the accelerating demand for cleaner and more efficient energy sources, hydrogen research has attracted more attention in the scientific community. Until now, full implementation of a hydrogen-based energy system has been hindered in part by the challenge of storing hydrogen gas, especially onboard an automobile. New techniques being researched may soon make hydrogen storage more compact, safe and efficient. In   this overview, few hydrogen storage methods and mechanism of hydrogen uptake in carbon nanotubes are summarized.

Adsorption of Crystal Violet onto BTEA- and CTMA-bentonite from Aqueous Solutions

CTMA-bentonite and BTEA-Bentonite prepared by Na-bentonite cation exchanged with cetyltrimethylammonium(CTMA) and benzyltriethylammonium (BTEA). Products were characterized by XRD and IR techniques.The d001 spacing value of CTMA-bentonite and BTEA-bentonite are 7.54Å and 3.50Å larger than that of Na-bentonite at 100% cation exchange capacity, respectively. The IR spectrum showed that the intensities of OH stretching and bending vibrations of the two organoclays decreased greatly comparing to untreated Na-bentonite. Batch experiments were carried out at 303 K, 318 K and 333 K to obtain the sorption isotherms of Crystal violet onto the two organoclays. The results show that the sorption isothermal data could be well described by Freundlich model. The dynamical data for the two organoclays fit well with pseudo-second-order kinetic model. The adsorption capacity of CTMA-bentonite was found higher than that of BTEA-Bentonite. Thermodynamic parameters such as changes in the free energy (ΔG°), the enthalpy (ΔH°) and the entropy (ΔS°) were also evaluated. The overall adsorption process of Crystal violet onto the two organoclays were spontaneous, endothermic physisorption. The CTMA-bentonite and BTEA-Bentonite could be employed as low-cost alternatives to activated carbon in wastewater treatment for the removal of color which comes from textile dyes.