Reduction of Impulsive Noise in OFDM System Using Adaptive Algorithm

The Orthogonal Frequency Division Multiplexing (OFDM) with high data rate, high spectral efficiency and its ability to mitigate the effects of multipath makes them most suitable in wireless application. Impulsive noise distorts the OFDM transmission and therefore methods must be investigated to suppress this noise. In this paper, a State Space Recursive Least Square (SSRLS) algorithm based adaptive impulsive noise suppressor for OFDM communication system is proposed. And a comparison with another adaptive algorithm is conducted. The state space model-dependent recursive parameters of proposed scheme enables to achieve steady state mean squared error (MSE), low bit error rate (BER), and faster convergence than that of some of existing algorithm.

M-ary Chaotic Sequence Based SLM-OFDM System for PAPR Reduction without Side-Information

Selected Mapping (SLM) is a PAPR reduction technique, which converts the OFDM signal into several independent signals by multiplication with the phase sequence set and transmits one of the signals with lowest PAPR. But it requires the index of the selected signal i.e. side information (SI) to be transmitted with each OFDM symbol. The PAPR reduction capability of the SLM scheme depends on the selection of phase sequence set. In this paper, we have proposed a new phase sequence set generation scheme based on M-ary chaotic sequence and a mapping scheme to map quaternary data to concentric circle constellation (CCC) is used. It is shown that this method does not require SI and provides better SER performance with good PAPR reduction capability as compared to existing SLMOFDM methods.

A Novel Estimation Method for Integer Frequency Offset in Wireless OFDM Systems

Ren et al. presented an efficient carrier frequency offset (CFO) estimation method for orthogonal frequency division multiplexing (OFDM), which has an estimation range as large as the bandwidth of the OFDM signal and achieves high accuracy without any constraint on the structure of the training sequence. However, its detection probability of the integer frequency offset (IFO) rapidly varies according to the fractional frequency offset (FFO) change. In this paper, we first analyze the Ren-s method and define two criteria suitable for detection of IFO. Then, we propose a novel method for the IFO estimation based on the maximum-likelihood (ML) principle and the detection criteria defined in this paper. The simulation results demonstrate that the proposed method outperforms the Ren-s method in terms of the IFO detection probability irrespective of a value of the FFO.

Design of High Gain, High Bandwidth Op-Amp for Reduction of Mismatch Currents in Charge Pump PLL in 180 nm CMOS Technology

The designing of charge pump with high gain Op- Amp is a challenging task for getting faithful response .Design of high performance phase locked loop require ,a design of high performance charge pump .We have designed a operational amplifier for reducing the error caused by high speed glitch in a transistor and mismatch currents . A separate Op-Amp has designed in 180 nm CMOS technology by CADENCE VIRTUOSO tool. This paper describes the design of high performance charge pump for GHz CMOS PLL targeting orthogonal frequency division multiplexing (OFDM) application. A high speed low power consumption Op-Amp with more than 500 MHz bandwidth has designed for increasing the speed of charge pump in Phase locked loop.

Adaptive Square-Rooting Companding Technique for PAPR Reduction in OFDM Systems

This paper addresses the problem of peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) systems. It also introduces a new PAPR reduction technique based on adaptive square-rooting (SQRT) companding process. The SQRT process of the proposed technique changes the statistical characteristics of the OFDM output signals from Rayleigh distribution to Gaussian-like distribution. This change in statistical distribution results changes of both the peak and average power values of OFDM signals, and consequently reduces significantly the PAPR. For the 64QAM OFDM system using 512 subcarriers, up to 6 dB reduction in PAPR was achieved by square-rooting technique with fixed degradation in bit error rate (BER) equal to 3 dB. However, the PAPR is reduced at the expense of only -15 dB out-ofband spectral shoulder re-growth below the in-band signal level. The proposed adaptive SQRT technique is superior in terms of BER performance than the original, non-adaptive, square-rooting technique when the required reduction in PAPR is no more than 5 dB. Also, it provides fixed amount of PAPR reduction in which it is not available in the original SQRT technique.