A Novel SVM-Based OOK Detector in Low SNR Infrared Channels

Support Vector Machine (SVM) is a recent class of statistical classification and regression techniques playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM is applied to an infrared (IR) binary communication system with different types of channel models including Ricean multipath fading and partially developed scattering channel with additive white Gaussian noise (AWGN) at the receiver. The structure and performance of SVM in terms of the bit error rate (BER) metric is derived and simulated for these channel stochastic models and the computational complexity of the implementation, in terms of average computational time per bit, is also presented. The performance of SVM is then compared to classical binary signal maximum likelihood detection using a matched filter driven by On-Off keying (OOK) modulation. We found that the performance of SVM is superior to that of the traditional optimal detection schemes used in statistical communication, especially for very low signal-to-noise ratio (SNR) ranges. For large SNR, the performance of the SVM is similar to that of the classical detectors. The implication of these results is that SVM can prove very beneficial to IR communication systems that notoriously suffer from low SNR at the cost of increased computational complexity.

Further Thoughtson a Sequential Life Testing Approach Using an Inverse Weibull Model

In this paper we will develop further the sequential life test approach presented in a previous article by [1] using an underlying two parameter Inverse Weibull sampling distribution. The location parameter or minimum life will be considered equal to zero. Once again we will provide rules for making one of the three possible decisions as each observation becomes available; that is: accept the null hypothesis H0; reject the null hypothesis H0; or obtain additional information by making another observation. The product being analyzed is a new electronic component. There is little information available about the possible values the parameters of the corresponding Inverse Weibull underlying sampling distribution could have.To estimate the shape and the scale parameters of the underlying Inverse Weibull model we will use a maximum likelihood approach for censored failure data. A new example will further develop the proposed sequential life testing approach.

Least Square-SVM Detector for Wireless BPSK in Multi-Environmental Noise

Support Vector Machine (SVM) is a statistical learning tool developed to a more complex concept of structural risk minimization (SRM). In this paper, SVM is applied to signal detection in communication systems in the presence of channel noise in various environments in the form of Rayleigh fading, additive white Gaussian background noise (AWGN), and interference noise generalized as additive color Gaussian noise (ACGN). The structure and performance of SVM in terms of the bit error rate (BER) metric is derived and simulated for these advanced stochastic noise models and the computational complexity of the implementation, in terms of average computational time per bit, is also presented. The performance of SVM is then compared to conventional binary signaling optimal model-based detector driven by binary phase shift keying (BPSK) modulation. We show that the SVM performance is superior to that of conventional matched filter-, innovation filter-, and Wiener filter-driven detectors, even in the presence of random Doppler carrier deviation, especially for low SNR (signal-to-noise ratio) ranges. For large SNR, the performance of the SVM was similar to that of the classical detectors. However, the convergence between SVM and maximum likelihood detection occurred at a higher SNR as the noise environment became more hostile.

Zero Truncated Strict Arcsine Model

The zero truncated model is usually used in modeling count data without zero. It is the opposite of zero inflated model. Zero truncated Poisson and zero truncated negative binomial models are discussed and used by some researchers in analyzing the abundance of rare species and hospital stay. Zero truncated models are used as the base in developing hurdle models. In this study, we developed a new model, the zero truncated strict arcsine model, which can be used as an alternative model in modeling count data without zero and with extra variation. Two simulated and one real life data sets are used and fitted into this developed model. The results show that the model provides a good fit to the data. Maximum likelihood estimation method is used in estimating the parameters.

Zero Inflated Strict Arcsine Regression Model

Zero inflated strict arcsine model is a newly developed model which is found to be appropriate in modeling overdispersed count data. In this study, we extend zero inflated strict arcsine model to zero inflated strict arcsine regression model by taking into consideration the extra variability caused by extra zeros and covariates in count data. Maximum likelihood estimation method is used in estimating the parameters for this zero inflated strict arcsine regression model.

Investigation of the Possibility to Prepare Supervised Classification Map of Gully Erosion by RS and GIS

This study investigates the possibility providing gully erosion map by the supervised classification of satellite images (ETM+) in two mountainous and plain land types. These land types were the part of Varamin plain, Tehran province, and Roodbar subbasin, Guilan province, as plain and mountain land types, respectively. The position of 652 and 124 ground control points were recorded by GPS respectively in mountain and plain land types. Soil gully erosion, land uses or plant covers were investigated in these points. Regarding ground control points and auxiliary points, training points of gully erosion and other surface features were introduced to software (Ilwis 3.3 Academic). The supervised classified map of gully erosion was prepared by maximum likelihood method and then, overall accuracy of this map was computed. Results showed that the possibility supervised classification of gully erosion isn-t possible, although it need more studies for results generalization to other mountainous regions. Also, with increasing land uses and other surface features in plain physiography, it decreases the classification of accuracy.

Discrete Polyphase Matched Filtering-based Soft Timing Estimation for Mobile Wireless Systems

In this paper we present a soft timing phase estimation (STPE) method for wireless mobile receivers operating in low signal to noise ratios (SNRs). Discrete Polyphase Matched (DPM) filters, a Log-maximum a posterior probability (MAP) and/or a Soft-output Viterbi algorithm (SOVA) are combined to derive a new timing recovery (TR) scheme. We apply this scheme to wireless cellular communication system model that comprises of a raised cosine filter (RCF), a bit-interleaved turbo-coded multi-level modulation (BITMM) scheme and the channel is assumed to be memory-less. Furthermore, no clock signals are transmitted to the receiver contrary to the classical data aided (DA) models. This new model ensures that both the bandwidth and power of the communication system is conserved. However, the computational complexity of ideal turbo synchronization is increased by 50%. Several simulation tests on bit error rate (BER) and block error rate (BLER) versus low SNR reveal that the proposed iterative soft timing recovery (ISTR) scheme outperforms the conventional schemes.

Additional Considerations on a Sequential Life Testing Approach using a Weibull Model

In this paper we will develop further the sequential life test approach presented in a previous article by [1] using an underlying two parameter Weibull sampling distribution. The minimum life will be considered equal to zero. We will again provide rules for making one of the three possible decisions as each observation becomes available; that is: accept the null hypothesis H0; reject the null hypothesis H0; or obtain additional information by making another observation. The product being analyzed is a new type of a low alloy-high strength steel product. To estimate the shape and the scale parameters of the underlying Weibull model we will use a maximum likelihood approach for censored failure data. A new example will further develop the proposed sequential life testing approach.

Modeling a Multinomial Logit Model of Intercity Travel Mode Choice Behavior for All Trips in Libya

In the planning point of view, it is essential to have mode choice, due to the massive amount of incurred in transportation systems. The intercity travellers in Libya have distinct features, as against travellers from other countries, which includes cultural and socioeconomic factors. Consequently, the goal of this study is to recognize the behavior of intercity travel using disaggregate models, for projecting the demand of nation-level intercity travel in Libya. Multinomial Logit Model for all the intercity trips has been formulated to examine the national-level intercity transportation in Libya. The Multinomial logit model was calibrated using nationwide revealed preferences (RP) and stated preferences (SP) survey. The model was developed for deference purpose of intercity trips (work, social and recreational). The variables of the model have been predicted based on maximum likelihood method. The data needed for model development were obtained from all major intercity corridors in Libya. The final sample size consisted of 1300 interviews. About two-thirds of these data were used for model calibration, and the remaining parts were used for model validation. This study, which is the first of its kind in Libya, investigates the intercity traveler’s mode-choice behavior. The intercity travel mode-choice model was successfully calibrated and validated. The outcomes indicate that, the overall model is effective and yields higher precision of estimation. The proposed model is beneficial, due to the fact that, it is receptive to a lot of variables, and can be employed to determine the impact of modifications in the numerous characteristics on the need for various travel modes. Estimations of the model might also be of valuable to planners, who can estimate possibilities for various modes and determine the impact of unique policy modifications on the need for intercity travel.

A Mixture Model of Two Different Distributions Approach to the Analysis of Heterogeneous Survival Data

In this paper we propose a mixture of two different distributions such as Exponential-Gamma, Exponential-Weibull and Gamma-Weibull to model heterogeneous survival data. Various properties of the proposed mixture of two different distributions are discussed. Maximum likelihood estimations of the parameters are obtained by using the EM algorithm. Illustrative example based on real data are also given.

Sequence Relationships Similarity of Swine Influenza a (H1N1) Virus

In April 2009, a new variant of Influenza A virus subtype H1N1 emerged in Mexico and spread all over the world. The influenza has three subtypes in human (H1N1, H1N2 and H3N2) Types B and C influenza tend to be associated with local or regional epidemics. Preliminary genetic characterization of the influenza viruses has identified them as swine influenza A (H1N1) viruses. Nucleotide sequence analysis of the Haemagglutinin (HA) and Neuraminidase (NA) are similar to each other and the majority of their genes of swine influenza viruses, two genes coding for the neuraminidase (NA) and matrix (M) proteins are similar to corresponding genes of swine influenza. Sequence similarity between the 2009 A (H1N1) virus and its nearest relatives indicates that its gene segments have been circulating undetected for an extended period. Nucleic acid sequence Maximum Likelihood (MCL) and DNA Empirical base frequencies, Phylogenetic relationship amongst the HA genes of H1N1 virus isolated in Genbank having high nucleotide sequence homology. In this paper we used 16 HA nucleotide sequences from NCBI for computing sequence relationships similarity of swine influenza A virus using the following method MCL the result is 28%, 36.64% for Optimal tree with the sum of branch length, 35.62% for Interior branch phylogeny Neighber – Join Tree, 1.85% for the overall transition/transversion, and 8.28% for Overall mean distance.

Mapping Paddy Rice Agriculture using Multi-temporal FORMOSAT-2 Images

Most paddy rice fields in East Asia are small parcels, and the weather conditions during the growing season are usually cloudy. FORMOSAT-2 multi-spectral images have an 8-meter resolution and one-day recurrence, ideal for mapping paddy rice fields in East Asia. To map rice fields, this study first determined the transplanting and the most active tillering stages of paddy rice and then used multi-temporal images to distinguish different growing characteristics between paddy rice and other ground covers. The unsupervised ISODATA (iterative self-organizing data analysis techniques) and supervised maximum likelihood were both used to discriminate paddy rice fields, with training areas automatically derived from ten-year cultivation parcels in Taiwan. Besides original bands in multi-spectral images, we also generated normalized difference vegetation index and experimented with object-based pre-classification and post-classification. This paper discusses results of different image classification methods in an attempt to find a precise and automatic solution to mapping paddy rice in Taiwan.

Continuous Feature Adaptation for Non-Native Speech Recognition

The current speech interfaces in many military applications may be adequate for native speakers. However, the recognition rate drops quite a lot for non-native speakers (people with foreign accents). This is mainly because the nonnative speakers have large temporal and intra-phoneme variations when they pronounce the same words. This problem is also complicated by the presence of large environmental noise such as tank noise, helicopter noise, etc. In this paper, we proposed a novel continuous acoustic feature adaptation algorithm for on-line accent and environmental adaptation. Implemented by incremental singular value decomposition (SVD), the algorithm captures local acoustic variation and runs in real-time. This feature-based adaptation method is then integrated with conventional model-based maximum likelihood linear regression (MLLR) algorithm. Extensive experiments have been performed on the NATO non-native speech corpus with baseline acoustic model trained on native American English. The proposed feature-based adaptation algorithm improved the average recognition accuracy by 15%, while the MLLR model based adaptation achieved 11% improvement. The corresponding word error rate (WER) reduction was 25.8% and 2.73%, as compared to that without adaptation. The combined adaptation achieved overall recognition accuracy improvement of 29.5%, and WER reduction of 31.8%, as compared to that without adaptation.

Automatic Detection of Mass Type Breast Cancer using Texture Analysis in Korean Digital Mammography

In this study, we present an advanced detection technique for mass type breast cancer based on texture information of organs. The proposed method detects the cancer areas in three stages. In the first stage, the midpoints of mass area are determined based on AHE (Adaptive Histogram Equalization). In the second stage, we set the threshold coefficient of homogeneity by using MLE (Maximum Likelihood Estimation) to compute the uniformity of texture. Finally, mass type cancer tissues are extracted from the original image. As a result, it was observed that the proposed method shows an improved detection performance on dense breast tissues of Korean women compared with the existing methods. It is expected that the proposed method may provide additional diagnostic information for detection of mass-type breast cancer.

ML Detection with Symbol Estimation for Nonlinear Distortion of OFDM Signal

In this paper, a new technique of signal detection has been proposed for detecting the orthogonal frequency-division multiplexing (OFDM) signal in the presence of nonlinear distortion.There are several advantages of OFDM communications system.However, one of the existing problems is remain considered as the nonlinear distortion generated by high-power-amplifier at the transmitter end due to the large dynamic range of an OFDM signal. The proposed method is the maximum likelihood detection with the symbol estimation. When the training data are available, the neural network has been used to learn the characteristic of received signal and to estimate the new positions of the transmitted symbol which are provided to the maximum likelihood detector. Resulting in the system performance, the nonlinear distortions of a traveling wave tube amplifier with OFDM signal are considered in this paper.Simulation results of the bit-error-rate performance are obtained with 16-QAM OFDM systems.

Improvement of MLLR Speaker Adaptation Using a Novel Method

This paper presents a technical speaker adaptation method called WMLLR, which is based on maximum likelihood linear regression (MLLR). In MLLR, a linear regression-based transform which adapted the HMM mean vectors was calculated to maximize the likelihood of adaptation data. In this paper, the prior knowledge of the initial model is adequately incorporated into the adaptation. A series of speaker adaptation experiments are carried out at a 30 famous city names database to investigate the efficiency of the proposed method. Experimental results show that the WMLLR method outperforms the conventional MLLR method, especially when only few utterances from a new speaker are available for adaptation.

Improved Segmentation of Speckled Images Using an Arithmetic-to-Geometric Mean Ratio Kernel

In this work, we improve a previously developed segmentation scheme aimed at extracting edge information from speckled images using a maximum likelihood edge detector. The scheme was based on finding a threshold for the probability density function of a new kernel defined as the arithmetic mean-to-geometric mean ratio field over a circular neighborhood set and, in a general context, is founded on a likelihood random field model (LRFM). The segmentation algorithm was applied to discriminated speckle areas obtained using simple elliptic discriminant functions based on measures of the signal-to-noise ratio with fractional order moments. A rigorous stochastic analysis was used to derive an exact expression for the cumulative density function of the probability density function of the random field. Based on this, an accurate probability of error was derived and the performance of the scheme was analysed. The improved segmentation scheme performed well for both simulated and real images and showed superior results to those previously obtained using the original LRFM scheme and standard edge detection methods. In particular, the false alarm probability was markedly lower than that of the original LRFM method with oversegmentation artifacts virtually eliminated. The importance of this work lies in the development of a stochastic-based segmentation, allowing an accurate quantification of the probability of false detection. Non visual quantification and misclassification in medical ultrasound speckled images is relatively new and is of interest to clinicians.

Parameter Estimation using Maximum Likelihood Method from Flight Data at High Angles of Attack

The paper presents the modeling of nonlinear longitudinal aerodynamics using flight data of Hansa-3 aircraft at high angles of attack near stall. The Kirchhoff-s quasi-steady stall model has been used to incorporate nonlinear aerodynamic effects in the aerodynamic model used to estimate the parameters, thereby, making the aerodynamic model nonlinear. The Maximum Likelihood method has been applied to the flight data (at high angles of attack) for the estimation of parameters (aerodynamic and stall characteristics) using the nonlinear aerodynamic model. To improve the accuracy level of the estimates, an approach of fixing the strong parameters has also been presented.

Quantitative Genetics Researches on Milk Protein Systems of Romanian Grey Steppe Breed

The paper makes part from a complex research project on Romanian Grey Steppe, a unique breed in terms of biological and cultural-historical importance, on the verge of extinction and which has been included in a preservation programme of genetic resources from Romania. The study of genetic polymorphism of protean fractions, especially kappa-casein, and the genotype relations of these lactoproteins with some quantitative and qualitative features of milk yield represents a current theme and a novelty for this breed. In the estimation of the genetic parameters we used R.E.M.L. (Restricted Maximum Likelihood) method. The main lactoprotein from milk, kappa - casein (K-cz), characterized in the specialized literature as a feature having a high degree of hereditary transmission, behaves as such in the nucleus under study, a value also confirmed by the heritability coefficient (h2 = 0.57 %). We must mention the medium values for milk and fat quantity (h2=0.26, 0.29 %) and the fat and protein percentage from milk having a high hereditary influence h2 = 0.71 - 0.63 %. Correlations between kappa-casein and the milk quantity are negative and strong. Between kappa-casein and other qualitative features of milk (fat content 0.58-0.67 % and protein content 0.77- 0.87%), there are positive and very strong correlations. At the same time, between kappa-casein and β casein (β-cz), β lactoglobulin (β- lg) respectively, correlations are positive having high values (0.37 – 0.45 %), indicating the same causes and determining factors for the two groups of features.