Molecular Dynamics Study on Laninamivir Inhibiting Neuraminidases of H5N1 and pH1N1 Influenza a Viruses

Viral influenza A subtypes H5N1 and pandemic H1N1 (pH1N1) have worldwide emerged and transmitted. The most common anti-influenza drug for treatment of both seasonal and pandemic influenza viruses is oseltamivir that nowadays becomes resistance to influenza neuraminidase. The novel long-acting drug, laninamivir, was discovered for treatment of the patients infected with influenza B and influenza A viruses. In the present study, laninamivir complexed with wild-type strain of both H5N1 and pH1N1 viruses were comparatively determined the structures and drug-target interactions by means of molecular dynamics (MD) simulations. The results show that the hydrogen bonding interactions formed between laninamivir and its binding residues are likely similar for the two systems. Additionally, the presence of intermolecular interactions from laninamivir to the residues in the binding pocket is established through their side chains in accordance with hydrogen bond interactions.

In silico Analysis of Human microRNAs Targeting Influenza a Viruses (subtype H1N1, H5N1 and H3N2)

In this study, three subtypes of influenza A viruses (pH1N1, H5N1 and H3N2) which naturally infected human were analyzed by bioinformatic approaches to find candidate human cellular miRNAs targeting viral genomes. There were 76 miRNAs targeting influenza A viruses. Among these candidates, 70 miRNAs were subtypes specifically targeting each subtype of influenza A virus including 21 miRNAs targeted subtype H1N1, 27 miRNAs targeted subtype H5N1 and 22 miRNAs targeted subtype H3N2. The remaining 6 miRNAs target on multiple subtypes of influenza A viruses. Uniquely, hsa-miR-3145 is the only one candidate miRNA targeting PB1 gene of all three subtypes. Obviously, most of the candidate miRNAs are targeting on polymerase complex genes (PB2, PB1 and PA) of influenza A viruses. This study predicted potential human miRNAs targeting on different subtypes of influenza A viruses which might be useful for inhibition of viral replication and for better understanding of the interaction between virus and host cell.