2D Gabor Functions and FCMI Algorithm for Flaws Detection in Ultrasonic Images

In this paper we present a new approach to detecting a flaw in T.O.F.D (Time Of Flight Diffraction) type ultrasonic image based on texture features. Texture is one of the most important features used in recognizing patterns in an image. The paper describes texture features based on 2D Gabor functions, i.e., Gaussian shaped band-pass filters, with dyadic treatment of the radial spatial frequency range and multiple orientations, which represent an appropriate choice for tasks requiring simultaneous measurement in both space and frequency domains. The most relevant features are used as input data on a Fuzzy c-mean clustering classifier. The classes that exist are only two: 'defects' or 'no defects'. The proposed approach is tested on the T.O.F.D image achieved at the laboratory and on the industrial field.

Computational Analysis of the MembraneTargeting Domains of Plant-specific PRAF Proteins

The PRAF family of proteins is a plant specific family of proteins with distinct domain architecture and various unique sequence/structure traits. We have carried out an extensive search of the Arabidopsis genome using an automated pipeline and manual methods to verify previously known and identify unknown instances of PRAF proteins, characterize their sequence and build 3D structures of their individual domains. Integrating the sequence, structure and whatever little known experimental details for each of these proteins and their domains, we present a comprehensive characterization of the different domains in these proteins and their variant properties.

A General Framework for Modeling Replicated Real-Time Database

There are many issues that affect modeling and designing real-time databases. One of those issues is maintaining consistency between the actual state of the real-time object of the external environment and its images as reflected by all its replicas distributed over multiple nodes. The need to improve the scalability is another important issue. In this paper, we present a general framework to design a replicated real-time database for small to medium scale systems and maintain all timing constrains. In order to extend the idea for modeling a large scale database, we present a general outline that consider improving the scalability by using an existing static segmentation algorithm applied on the whole database, with the intent to lower the degree of replication, enables segments to have individual degrees of replication with the purpose of avoiding excessive resource usage, which all together contribute in solving the scalability problem for DRTDBS.

Measuring Process Component Design on Achieving Managerial Goals

Process-oriented software development is a new software development paradigm in which software design is modeled by a business process which is in turn translated into a process execution language for execution. The building blocks of this paradigm are software units that are composed together to work according to the flow of the business process. This new paradigm still exhibits the characteristic of the applications built with the traditional software component technology. This paper discusses an approach to apply a traditional technique for software component fabrication to the design of process-oriented software units, called process components. These process components result from decomposing a business process of a particular application domain into subprocesses, and these process components can be reused to design the business processes of other application domains. The decomposition considers five managerial goals, namely cost effectiveness, ease of assembly, customization, reusability, and maintainability. The paper presents how to design or decompose process components from a business process model and measure some technical features of the design that would affect the managerial goals. A comparison between the measurement values from different designs can tell which process component design is more appropriate for the managerial goals that have been set. The proposed approach can be applied in Web Services environment which accommodates process-oriented software development.

Genetic Algorithm Based Optimal Control for a 6-DOF Non Redundant Stewart Manipulator

Applicability of tuning the controller gains for Stewart manipulator using genetic algorithm as an efficient search technique is investigated. Kinematics and dynamics models were introduced in detail for simulation purpose. A PD task space control scheme was used. For demonstrating technique feasibility, a Stewart manipulator numerical-model was built. A genetic algorithm was then employed to search for optimal controller gains. The controller was tested onsite a generic circular mission. The simulation results show that the technique is highly convergent with superior performance operating for different payloads.

Observation of the Correlations between Pair Wise Interaction and Functional Organization of the Proteins, in the Protein Interaction Network of Saccaromyces Cerevisiae

Understanding the cell's large-scale organization is an interesting task in computational biology. Thus, protein-protein interactions can reveal important organization and function of the cell. Here, we investigated the correspondence between protein interactions and function for the yeast. We obtained the correlations among the set of proteins. Then these correlations are clustered using both the hierarchical and biclustering methods. The detailed analyses of proteins in each cluster were carried out by making use of their functional annotations. As a result, we found that some functional classes appear together in almost all biclusters. On the other hand, in hierarchical clustering, the dominancy of one functional class is observed. In brief, from interaction data to function, some correlated results are noticed about the relationship between interaction and function which might give clues about the organization of the proteins.

Cloning of a β-Glucosidase Gene (BGL1) from Traditional Starter Yeast Saccharomycopsis fibuligera BMQ 908 and Expression in Pichia pastoris

β-Glucosidase is an important enzyme for production of ethanol from lignocellulose. With hydrolytic activity on cellooligosaccharides, especially cellobiose, β-glucosidase removes product inhibitory effect on cellulases and forms fermentable sugars. In this study, β-glucosidase encoding gene (BGL1) from traditional starter yeast Saccharomycosis fibuligera BMQ908 was cloned and expressed in Pichia pastoris. BGL1 of S. fibuligera BMQ 908 shared 98% nucleotide homology with the closest GenBank sequence (M22475) but identity in amino-acid sequences of catalytic domains. Recombinant plasmid pPICZαA/BGL1 containing the sequence encoding BGL1 mature protein and α-factor secretion signal was constructed and transformed into methylotrophic yeast P. pastoris by electroporation. The recombinant strain produced single extracellular protein with molecular weight of 120 kDa and cellobiase activity of 60 IU/ml. The optimum pH of the recombinant β-glucosidase was 5.0 and the optimum temperature was 50°C.

3D CFD Simulation of Thermal Hydraulic Performances on Louvered Fin Automotive Heat Exchangers

This study deals with Computational Fluid Dynamics (CFD) studies of the interactions between the air flow and louvered fins which equipped the automotive heat exchangers. 3D numerical simulation results are obtained by using the ANSYS Fluent 13.0 code and compared to experimental data. The paper studies the effect of louver angle and louver pitch geometrical parameters, on overall thermal hydraulic performances of louvered fins. The comparison between CFD simulations and experimental data show that established 3-D CFD model gives a good agreement. The validation agrees, with about 7% of deviation respectively of friction and Colburn factors to experimental results. As first, it is found that the louver angle has a strong influence on the heat transfer rate. Then, louver angle and louver pitch variation of the louvers and their effects on thermal hydraulic performances are studied. In addition to this study, it is shown that the second half of the fin takes has a significant contribution on pressure drop increase without any increase in heat transfer.

Exact Solution of Some Helical Flows of Newtonian Fluids

This paper deals with the helical flow of a Newtonian fluid in an infinite circular cylinder, due to both longitudinal and rotational shear stress. The velocity field and the resulting shear stress are determined by means of the Laplace and finite Hankel transforms and satisfy all imposed initial and boundary conditions. For large times, these solutions reduce to the well-known steady-state solutions.

Using Automatic Ontology Learning Methods in Human Plausible Reasoning Based Systems

Knowledge discovery from text and ontology learning are relatively new fields. However their usage is extended in many fields like Information Retrieval (IR) and its related domains. Human Plausible Reasoning based (HPR) IR systems for example need a knowledge base as their underlying system which is currently made by hand. In this paper we propose an architecture based on ontology learning methods to automatically generate the needed HPR knowledge base.

Elaboration and Optimization of Pellets Used for Precise Glass Grinding

In this work, grinding or microcutting tools in the form of pellets were manufactured using a bounded alumina abrasive grains. The bound used is a vitreous material containing quartz feldspars, kaolinite and a quantity of hematite. The pellets were used in glass grinding process to replace the free abrasive grains lapping process. The study of the elaborated pellets were done to define their effectiveness in the grinding process and to optimize the influence of the pellets elaboration parameters. The obtained results show the existence of an optimal combination of the pellets elaboration parameters for each glass grinding phase (coarse to fine grinding). The final roughness (rms) reached by the elaborated pellets on a BK7 glass surface was about 0.392 μm.

How Prior Knowledge Affects User's Understanding of System Requirements?

Requirements are critical to system validation as they guide all subsequent stages of systems development. Inadequately specified requirements generate systems that require major revisions or cause system failure entirely. Use Cases have become the main vehicle for requirements capture in many current Object Oriented (OO) development methodologies, and a means for developers to communicate with different stakeholders. In this paper we present the results of a laboratory experiment that explored whether different types of use case format are equally effective in facilitating high knowledge user-s understanding. Results showed that the provision of diagrams along with the textual use case descriptions significantly improved user comprehension of system requirements in both familiar and unfamiliar application domains. However, when comparing groups that received models of textual description accompanied with diagrams of different level of details (simple and detailed) we found no significant difference in performance.

Paradigms Shift in Sport Sciences: Body's focus

Sports Sciences has been historically supported by the positivism idea of science, especially by the mechanistic/reductionist and becomes a field that views experimentation and measurement as the mayor research domains. The disposition to simplify nature and the world by parts has fragmented and reduced the idea of bodyathletes as machine. In this paper we intent to re-think this perception lined by Complexity Theory. We come with the idea of athletes as a reflexive and active being (corporeity-body). Therefore, the construction of a training that considers the cultural, biological, psychological elements regarding the experience of the human corporal movements in a circumspect and responsible way could bring better chances of accomplishment. In the end, we hope to help coaches understand the intrinsic complexity of the body they are training, how better deal with it, and, in the field of a deep globalization among the different types of knowledge, to respect and accepted the peculiarities of knowledge that comprise this area.

Isolation and Identification of an Acetobacter Strain from Iranian White-Red Cherry with High Acetic Acid Productivity as a Potential Strain for Cherry Vinegar Production in Foodand Agriculture Biotechnology

According to FDA (Food and Drug Administration of the United States), vinegar is definedas a sour liquid containing at least 4 grams acetic acid in 100 cubic centimeter (4% solution of acetic acid) of solution that is produced from sugary materials by alcoholic fermentation. In the base of microbial starters, vinegars could be contained of more than 50 types of volatile and aromatic substances that responsible for their sweet taste and smelling. Recently the vinegar industry has a great proportion in agriculture, food and microbial biotechnology. The acetic acid bacteria are from the family Acetobacteraceae. Regarding to the latest version of Bergy-s Mannual of Systematic Bacteriology that has categorized bacteria in the base of their 16s RNA differences, the most important acetic acid genera are included Acetobacter (genus I), Gluconacetobacter (genus VIII) and Gluconobacter (genus IX). The genus Acetobacter that is primarily used in vinegar manufacturing plants is a gram negative, obligate aerobe coccus or rod shaped bacterium with the size 0.6 - 0.8 X 1.0 - 4.0 μm, nonmotile or motile with peritrichous flagella and catalase positive – oxidase negative biochemically. Some strains are overoxidizer that could convert acetic acid to carbon dioxide and water.In this research one Acetobacter native strain with high acetic acid productivity was isolated from Iranian white – red cherry. We used two specific culture media include Carr medium [yeast extract, 3%; ethanol, 2% (v/v); bromocresol green, 0.002%; agar, 2% and distilled water, 1000 ml], Frateur medium [yeast extract, 10 g/l; CaCO3, 20 g/l; ethanol, 20 g/l; agar, 20 g/l and distilled water, 1000 ml] and an industrial culture medium. In addition to high acetic acid production and high growth rate, this strain had a good tolerance against ethanol concentration that was examined using modified Carr media with 5%, 7% and 9% ethanol concentrations. While the industrial strains of acetic acid bacteria grow in the thermal range of 28 – 30 °C, this strain was adapted for growth in 34 – 36 °C after 96 hours incubation period. These dramatic characteristics suggest a potential biotechnological strain in production of cherry vinegar with a sweet smell and different nutritional properties in comparison to recent vinegar types. The lack of growth after 24, 48 and 72 hours incubation at 34 – 36 °C and the growth after 96 hours indicates a good and fast thermal flexibility of this strain as a significant characteristic of biotechnological and industrial strains.

Numerical Simulations of Flood and Inundation in Jobaru River Basin Using Laser Profiler Data

Laser Profiler (LP) data from aerial laser surveys have been increasingly used as topographical inputs to numerical simulations of flooding and inundation in river basins. LP data has great potential for reproducing topography, but its effective usage has not yet been fully established. In this study, flooding and inundation are simulated numerically using LP data for the Jobaru River basin of Japan’s Saga Plain. The analysis shows that the topography is reproduced satisfactorily in the computational domain with urban and agricultural areas requiring different grid sizes. A 2-D numerical simulation shows that flood flow behavior changes as grid size is varied.

Virulent-GO: Prediction of Virulent Proteins in Bacterial Pathogens Utilizing Gene Ontology Terms

Prediction of bacterial virulent protein sequences can give assistance to identification and characterization of novel virulence-associated factors and discover drug/vaccine targets against proteins indispensable to pathogenicity. Gene Ontology (GO) annotation which describes functions of genes and gene products as a controlled vocabulary of terms has been shown effectively for a variety of tasks such as gene expression study, GO annotation prediction, protein subcellular localization, etc. In this study, we propose a sequence-based method Virulent-GO by mining informative GO terms as features for predicting bacterial virulent proteins. Each protein in the datasets used by the existing method VirulentPred is annotated by using BLAST to obtain its homologies with known accession numbers for retrieving GO terms. After investigating various popular classifiers using the same five-fold cross-validation scheme, Virulent-GO using the single kind of GO term features with an accuracy of 82.5% is slightly better than VirulentPred with 81.8% using five kinds of sequence-based features. For the evaluation of independent test, Virulent-GO also yields better results (82.0%) than VirulentPred (80.7%). When evaluating single kind of feature with SVM, the GO term feature performs much well, compared with each of the five kinds of features.

Investigation of Anti-Inflammatory, Antipyretic and Analgesic Effect of Yemeni Sidr Honey

Traditionally, Yemini Sidr honey has been reported to cure liver problems, stomach ulcers, and respiratory disorders. In this experiment, we evaluated Yemeni Sidr honey for its ability to protect inflammations caused by acetic acid and formalin -induced writhing, carrageenan and histamine-induced paw oedema in experimental rat model. Hyperpyrexia, membrane stabilizing activity, and phytochemical screening of the honey was also examined. Yemini Sidr Honey at (100, 200 and 500 mg/kg) exhibited a concentration dependant inhibition of acetic acid induced and formalin induced writhing, paw oedema induced by carrageenan & histamine, and hyperpyrexia induced by brewer's yeast, it also inhibited membrane stabilizing activity. Phytochemical screenings of the honey reveal the presence of flavonoids, steroid, alkaloids, saponins and tannins. This study suggested that Yemeni Sidr honey possess very strong antiinflammatory, analgesic and antipyretic effects and these effects would be a result of the phytochemicals present.

Application of Build-up and Wash-off Models for an East-Australian Catchment

Estimation of stormwater pollutants is a pre-requisite for the protection and improvement of the aquatic environment and for appropriate management options. The usual practice for the stormwater quality prediction is performed through water quality modeling. However, the accuracy of the prediction by the models depends on the proper estimation of model parameters. This paper presents the estimation of model parameters for a catchment water quality model developed for the continuous simulation of stormwater pollutants from a catchment to the catchment outlet. The model is capable of simulating the accumulation and transportation of the stormwater pollutants; suspended solids (SS), total nitrogen (TN) and total phosphorus (TP) from a particular catchment. Rainfall and water quality data were collected for the Hotham Creek Catchment (HTCC), Gold Coast, Australia. Runoff calculations from the developed model were compared with the calculated discharges from the widely used hydrological models, WBNM and DRAINS. Based on the measured water quality data, model water quality parameters were calibrated for the above-mentioned catchment. The calibrated parameters are expected to be helpful for the best management practices (BMPs) of the region. Sensitivity analyses of the estimated parameters were performed to assess the impacts of the model parameters on overall model estimations of runoff water quality.

Evaluating Alternative Fuel Vehicles from Technical, Environmental and Economic Perspectives: Case of Light-Duty Vehicles in Iran

This paper presents an environmental and technoeconomic evaluation of light duty vehicles in Iran. A comprehensive well-to-wheel (WTW) analysis is applied to compare different automotive fuel chains, conventional internal combustion engines and innovative vehicle powertrains. The study examines the competitiveness of 15 various pathways in terms of energy efficiencies, GHG emissions, and levelized cost of different energy carriers. The results indicate that electric vehicles including battery electric vehicles (BEV), fuel cell vehicles (FCV) and plug-in hybrid electric vehicles (PHEV) increase the WTW energy efficiency by 54%, 51% and 46%, respectively, compared to common internal combustion engines powered by gasoline. On the other hand, greenhouse gas (GHG) emissions per kilometer of FCV and BEV would be 48% lower than that of gasoline engines. It is concluded that BEV has the lowest total cost of energy consumption and external cost of emission, followed by internal combustion engines (ICE) fueled by CNG. Conventional internal combustion engines fueled by gasoline, on the other hand, would have the highest costs.

Instability Analysis of Laminated Composite Beams Subjected to Parametric Axial Load

The integral form of equations of motion of composite beams subjected to varying time loads are discretized using a developed finite element model. The model consists of a straight five node twenty-two degrees of freedom beam element. The stability analysis of the beams is studied by solving the matrix form characteristic equations of the system. The principle of virtual work and the first order shear deformation theory are employed to analyze the beams with large deformation and small strains. The regions of dynamic instability of the beam are determined by solving the obtained Mathieu form of differential equations. The effects of nonconservative loads, shear stiffness, and damping parameters on stability and response of the beams are examined. Several numerical calculations are presented to compare the results with data reported by other researchers.