Cloning and Over Expression of an Aspergillus niger XP Phytase Gene (phyA) in Pichia pastoris

A. niger XP isolated from Vietnam produces very low amount of acidic phytase with optimal pH at 2.5 and 5.5. The phytase production of this strain was successfully improved through gene cloning and expression. A 1.4 - kb DNA fragment containing the coding region of the phyA gene was amplified by PCR and inserted into the expression vector pPICZαA with a signal peptide α- factor, under the control of AOX1 promoter. The recombined plasmid was transformed into the host strain P. pastoris KM71H and X33 by electroporation. Both host strains could efficiently express and secret phytase. The multicopy strains were screened for over expression of phytase. All the selected multicopy strains of P. pastoris X33 were examined for phytase activity, the maximum phytase yield of 1329 IU/ml was obtained after 4 days of incubation in medium BMM. The recombinant protein with MW of 97.4 KW showed to be the only one protein secreted in the culture broth. Multicopy transformant P. pastoris X33 supposed to be potential candidate for producing the commercial preparation of phytase.

Probe Selection for Pathway-Specific Microarray Probe Design Minimizing Melting Temperature Variance

In molecular biology, microarray technology is widely and successfully utilized to efficiently measure gene activity. If working with less studied organisms, methods to design custom-made microarray probes are available. One design criterion is to select probes with minimal melting temperature variances thus ensuring similar hybridization properties. If the microarray application focuses on the investigation of metabolic pathways, it is not necessary to cover the whole genome. It is more efficient to cover each metabolic pathway with a limited number of genes. Firstly, an approach is presented which minimizes the overall melting temperature variance of selected probes for all genes of interest. Secondly, the approach is extended to include the additional constraints of covering all pathways with a limited number of genes while minimizing the overall variance. The new optimization problem is solved by a bottom-up programming approach which reduces the complexity to make it computationally feasible. The new method is exemplary applied for the selection of microarray probes in order to cover all fungal secondary metabolite gene clusters for Aspergillus terreus.

Isobaric Vapor-Liquid Equilibrium Data for Binary Mixture of 2-Methyltetrahydrofuran and Cumene

Isobaric vapor-liquid equilibrium measurements are reported for binary mixture of 2-Methyltetrahydrofuran and Cumene at 97.3 kPa. The data were obtained using a vapor recirculating type (modified Othmer's) equilibrium still. The mixture shows slight negative deviation from ideality. The system does not form an azeotrope. The experimental data obtained in this study are thermodynamically consistent according to the Herington test. The activity coefficients have been satisfactorily correlated by means of the Margules, and NRTL equations. Excess Gibbs free energy has been calculated from the experimental data. The values of activity coefficients have also been obtained by the UNIFAC group contribution method.

Stochastic Simulation of Reaction-Diffusion Systems

Reactiondiffusion systems are mathematical models that describe how the concentration of one or more substances distributed in space changes under the influence of local chemical reactions in which the substances are converted into each other, and diffusion which causes the substances to spread out in space. The classical representation of a reaction-diffusion system is given by semi-linear parabolic partial differential equations, whose general form is ÔêétX(x, t) = DΔX(x, t), where X(x, t) is the state vector, D is the matrix of the diffusion coefficients and Δ is the Laplace operator. If the solute move in an homogeneous system in thermal equilibrium, the diffusion coefficients are constants that do not depend on the local concentration of solvent and of solutes and on local temperature of the medium. In this paper a new stochastic reaction-diffusion model in which the diffusion coefficients are function of the local concentration, viscosity and frictional forces of solvent and solute is presented. Such a model provides a more realistic description of the molecular kinetics in non-homogenoeus and highly structured media as the intra- and inter-cellular spaces. The movement of a molecule A from a region i to a region j of the space is described as a first order reaction Ai k- → Aj , where the rate constant k depends on the diffusion coefficient. Representing the diffusional motion as a chemical reaction allows to assimilate a reaction-diffusion system to a pure reaction system and to simulate it with Gillespie-inspired stochastic simulation algorithms. The stochastic time evolution of the system is given by the occurrence of diffusion events and chemical reaction events. At each time step an event (reaction or diffusion) is selected from a probability distribution of waiting times determined by the specific speed of reaction and diffusion events. Redi is the software tool, developed to implement the model of reaction-diffusion kinetics and dynamics. It is a free software, that can be downloaded from http://www.cosbi.eu. To demonstrate the validity of the new reaction-diffusion model, the simulation results of the chaperone-assisted protein folding in cytoplasm obtained with Redi are reported. This case study is redrawing the attention of the scientific community due to current interests on protein aggregation as a potential cause for neurodegenerative diseases.

The Effects of Feeding Dried Fermented Cassava Peel on Milk Production and Composition of Etawah Crossedbred Goat

Twelve lactating Etawah Crossedbred goats were used in this study. Goat feed consisted of Cally andra callothyrsus, Pennisetum purpureum, wheat bran and dried fermented cassava peel. The cassava peels were fermented with a traditional culture called “ragi tape" (mixed culture of Saccharomyces cerevisae, Aspergillus sp, Candida, Hasnula and Acetobacter). The goats were divided into 2 groups (Control and Treated) of six does. The experimental diet of the Control group consisted of 70% of roughage (fresh Callyandra callothyrsus and Pennisetum purpureum 60:40) and 30% of wheat bran on dry matter (DM) base. In the Treated group 30% of wheat bran was replaced with dried fermented cassava peels. Data were statistically analyzed using analysis of variance followed SPSS program. The concentration of HCN in fermented cassava peel decreased to non toxic level. Nutrient composition of dried fermented cassava peel consisted of 85.75% dry matter; 5.80% crude protein and 82.51% total digestible nutrien (TDN). Substitution of 30% of wheat bran with dried fermented cassava peel in the diet had no effect on dry matter and organic matter intake but significantly (P< 0.05) decreased crude protein and TDN consumption as well as milk yields and milk composition. The study recommended to reduced the level of substitution to less than 30% of concentrates in the diet in order to avoid low nutrient intake and milk production of goats.

A Report on Occurrence and Parasite-Host of Ligula intestinalis in Sattarkhan Lake(East Azerbaijan-Iran)

Ligula intestinalis is a three-host life-cycle Pseudophyllidean Cestode which in its plerocercoid stage infests a range of fresh water species. The objective of the present study was the worm occurrence within planctonic copepods, fishes and piscivorous birds and examine of parasite-hosts samples in the Lake of Sattarkhan Dam (near the city of Ahar, East Azerbaijan, Iran). Fish sample were collected with fyke and gill nets and the abdominal cavity was examined for the presence of ligula. Zooplanktons were captured using a planktonic net and occurrence of parasitic larval form in the body cavity was determined. Piscivorous birds were selected by telescope, they hunted and dissected for presence of parasite eggs in their gut. Results indicated that prevalence of infection was 16% for cyclopid copepoda and majority of infected cyclopid were female Cyclops. Investigation of 310 fishes specimens were indicated to infection of five species of cyprinid fishes. In addition, results indicated to manipulation of six species of migratory aquatic and semi aquatic birds by ligula. Obtained results are in agreement by previous studies. Its definite in this study that all of fishes in Sattarkhan Lake capable to infection, its important for health because they capture by native people and it is documented that ligula can be introduce as a zoonose. It's seemed that to prevent from disperses of parasite and restricted of infection, biological elimination can be effective and it's necessary to inform native people about sanitation.

Expert Witness Testimony in the Battered Woman Syndrome

The Expert Witness Testimony in the Battered Woman Syndrome Expert witness testimony (EWT) is a kind of information given by an expert specialized in the field (here in BWS) to the jury in order to help the court better understand the case. EWT does not always work in favor of the battered women. Two main decision-making models are discussed in the paper: the Mathematical model and the Explanation model. In the first model, the jurors calculate ″the importance and strength of each piece of evidence″ whereas in the second model they try to integrate the EWT with the evidence and create a coherent story that would describe the crime. The jury often misunderstands and misjudges battered women for their action (or in this case inaction). They assume that these women are masochists and accept being mistreated for if a man abuses a woman constantly, she should and could divorce him or simply leave at any time. The research in the domain found that indeed, expert witness testimony has a powerful influence on juror’s decisions thus its quality needs to be further explored. One of the important factors that need further studies is a bias called the dispositionist worldview (a belief that what happens to people is of their own doing). This kind of attributional bias represents a tendency to think that a person’s behavior is due to his or her disposition, even when the behavior is clearly attributed to the situation. Hypothesis The hypothesis of this paper is that if a juror has a dispositionist worldview then he or she will blame the rape victim for triggering the assault. The juror would therefore commit the fundamental attribution error and believe that the victim’s disposition caused the rape and not the situation she was in. Methods The subjects in the study were 500 randomly sampled undergraduate students from McGill, Concordia, Université de Montréal and UQAM. Dispositional Worldview was scored on the Dispositionist Worldview Questionnaire. After reading the Rape Scenarios, each student was asked to play the role of a juror and answer a questionnaire consisting of 7 questions about the responsibility, causality and fault of the victim. Results The results confirm the hypothesis which states that if a juror has a dispositionist worldview then he or she will blame the rape victim for triggering the assault. By doing so, the juror commits the fundamental attribution error because he will believe that the victim’s disposition, and not the constraints or opportunities of the situation, caused the rape scenario.

Biosynthesis and In vitro Studies of Silver Bionanoparticles Synthesized from Aspergillusspecies and its Antimicrobial Activity against Multi Drug Resistant Clinical Isolates

Antimicrobial resistant is becoming a major factor in virtually all hospital acquired infection may soon untreatable is a serious public health problem. These concerns have led to major research effort to discover alternative strategies for the treatment of bacterial infection. Nanobiotehnology is an upcoming and fast developing field with potential application for human welfare. An important area of nanotechnology for development of reliable and environmental friendly process for synthesis of nanoscale particles through biological systems In the present studies are reported on the use of fungal strain Aspergillus species for the extracellular synthesis of bionanoparticles from 1 mM silver nitrate (AgNO3) solution. The report would be focused on the synthesis of metallic bionanoparticles of silver using a reduction of aqueous Ag+ ion with the culture supernatants of Microorganisms. The bio-reduction of the Ag+ ions in the solution would be monitored in the aqueous component and the spectrum of the solution would measure through UV-visible spectrophotometer The bionanoscale particles were further characterized by Atomic Force Microscopy (AFM), Fourier Transform Infrared Spectroscopy (FTIR) and Thin layer chromatography. The synthesized bionanoscale particle showed a maximum absorption at 385 nm in the visible region. Atomic Force Microscopy investigation of silver bionanoparticles identified that they ranged in the size of 250 nm - 680 nm; the work analyzed the antimicrobial efficacy of the silver bionanoparticles against various multi drug resistant clinical isolates. The present Study would be emphasizing on the applicability to synthesize the metallic nanostructures and to understand the biochemical and molecular mechanism of nanoparticles formation by the cell filtrate in order to achieve better control over size and polydispersity of the nanoparticles. This would help to develop nanomedicine against various multi drug resistant human pathogens.

Effect of Body Size and Condition Factor on Whole Body Composition of Hybrid (Catla catla ♂x Labeo rohita ♀) from Pakistan

In the present study, 49 Hybrid (Catla catla ♂ x Labeo rohita ♀) were sampled from Al-Raheem Fish Hatchery, Village Ali Pure Shamali, Jhang Road, 18 Km from Muzaffar Garh using a cast net and Live fishes were transported to research laboratory. Mean percentage for water found 79.13 %, ash 6.58 %, fat 2.22 % and protein content 12.06 % in whole wet body weight. It was observed that body constituents were found increasing in the same proportion with an increase in body weight while significant proportional increase was observed with total length. However, condition factor remained insignificant (P>0.05) with body constituents.

Fungal Leaching of Hazardous Heavy Metals from a Spent Hydrotreating Catalyst

In this study, the ability of Aspergillus niger and Penicillium simplicissimum to extract heavy metals from a spent refinery catalyst was investigated. For the first step, a spent processing catalyst from one of the oil refineries in Iran was physically and chemically characterized. Aspergillus niger and Penicillium simplicissimum were used to mobilize Al/Co/Mo/Ni from hazardous spent catalysts. The fungi were adapted to the mixture of metals at 100-800 mg L-1 with increments in concentration of 100 mg L-1. Bioleaching experiments were carried out in batch cultures. To investigate the production of organic acids in sucrose medium, analyses of the culture medium by HPLC were performed at specific time intervals after inoculation. The results obtained from Inductive coupled plasma-optical emission spectrometry (ICP-OES) showed that after the one-step bioleaching process using Aspergillus niger, maximum removal efficiencies of 27%, 66%, 62% and 38% were achieved for Al, Co, Mo and Ni, respectively. However, the highest removal efficiencies using Penicillium simplicissimum were of 32%, 67%, 65% and 38% for Al, Co, Mo and Ni, respectively

Production of Cellulases by Aspergillus Heteromorphus from Wheat Straw under Submerged Fermentation

To investigate the production of cellulases from Aspergillus heteromorphus, submerged fermentation was performed using wheat straw as substrate. Optimization of saccharification conditions like pH, temperature and time were studied. Highest reducing sugar was released on 5th day at 5 pH, 30° C temperature. When A. heteromorphous was grown on wheat straw in submerged fermentation after 5 days incubation at 30 ° C, 3.2 IU/ml and 83 IU/ml, filter paper activity and CMCase activity respectively.

Isobaric Vapor-Liquid Equilibrium of Binary Mixture of Methyl Acetate with Isopropylbenzene at 97.3 kPa

Isobaric vapor-liquid equilibrium measurements are reported for the binary mixture of Methyl acetate and Isopropylbenzene at 97.3 kPa. The measurements have been performed using a vapor recirculating type (modified Othmer's) equilibrium still. The mixture shows positive deviation from ideality and does not form an azeotrope. The activity coefficients have been calculated taking into consideration the vapor phase nonideality. The data satisfy the thermodynamic consistency tests of Herington and Black. The activity coefficients have been satisfactorily correlated by means of the Margules, NRTL, and Black equations. A comparison of the values of activity coefficients obtained by experimental data with the UNIFAC model has been made.

Novel Dual Stage Membrane Bioreactor for the Continuous Remediation of Electroplating Wastewater

In this study, the designed dual stage membrane bioreactor (MBR) system was conceptualized for the treatment of cyanide and heavy metals in electroplating wastewater. The design consisted of a primary treatment stage to reduce the impact of fluctuations and the secondary treatment stage to remove the residual cyanide and heavy metal contaminants in the wastewater under alkaline pH conditions. The primary treatment stage contained hydrolyzed Citrus sinensis (C. sinensis) pomace and the secondary treatment stage contained active Aspergillus awamori (A. awamori) biomass, supplemented solely with C. sinensis pomace extract from the hydrolysis process. An average of 76.37%, 95.37%, 93.26 and 94.76% and 99.55%, 99.91%, 99.92% and 99.92% degradation efficiency for total cyanide (T-CN), including the sorption of nickel (Ni), zinc (Zn) and copper (Cu) were observed after the first and second treatment stages, respectively. Furthermore, cyanide conversion by-products degradation was 99.81% and 99.75 for both formate (CHOO-) and ammonium (NH4 +) after the second treatment stage. After the first, second and third regeneration cycles of the C. sinensis pomace in the first treatment stage, Ni, Zn and Cu removal achieved was 99.13%, 99.12% and 99.04% (first regeneration cycle), 98.94%, 98.92% and 98.41% (second regeneration cycle) and 98.46 %, 98.44% and 97.91% (third regeneration cycle), respectively. There was relatively insignificant standard deviation detected in all the measured parameters in the system which indicated reproducibility of the remediation efficiency in this continuous system.

Kinetic and Optimization Studies on Ethanol Production from Corn Flour

Studies on Simultaneous Saccharification and Fermentation (SSF) of corn flour, a major agricultural product as the substrate using starch digesting glucoamylase enzyme derived from Aspergillus niger and non starch digesting and sugar fermenting Saccharomyces cerevisiae in a batch fermentation. Experiments based on Central Composite Design (CCD) were conducted to study the effect of substrate concentration, pH, temperature, enzyme concentration on Ethanol Concentration and the above parameters were optimized using Response Surface Methodology (RSM). The optimum values of substrate concentration, pH, temperature and enzyme concentration were found to be 160 g/l, 5.5, 30°C and 50 IU respectively. The effect of inoculums age on ethanol concentration was also investigated. The corn flour solution equivalent to 16% initial starch concentration gave the highest ethanol concentration of 63.04 g/l after 48 h of fermentation at optimum conditions of pH and temperature. Monod model and Logistic model were used for growth kinetics and Leudeking – Piret model was used for product formation kinetics.

Microbiological and Physicochemical Studies of Wetland Soils in Eket, Nigeria

The microbiological and physicochemical characteristics of wetland soils in Eket Local Government Area were studied between May 2001 and June 2003. Total heterotrophic bacterial counts (THBC), total fungal counts (TFC), and total actinomycetes counts (TAC) were determined from soil samples taken from four locations at two depths in the wet and dry seasons. Microbial isolates were characterized and identified. Particle size and chemical parameters were also determined using standard methods. THBC ranged from 5.2 (+0.17) x106 to 1.7 (+0.18) x107 cfu/g and from 2.4 (+0.02) x106 to 1.4 (+0.04) x107cfu/g in the wet and dry seasons, respectively. TFC ranged from 1.8 (+0.03) x106 to 6.6 (+ 0.18) x106 cfu/g and from 1.0 (+0.04) x106 to 4.2 (+ 0.01) x106 cfu/g in the wet and dry seasons, respectively .TAC ranged from 1.2 (+0.53) x106 to 6.0 (+0.05) x106 cfu/g and from 0.6 (+0.01) x106 to 3.2 (+ 0.12) x106 cfu/g in the wet and dry season, respectively. Acinetobacter, Alcaligenes, Arthrobacter, Bacillus, Beijerinckja, Enterobacter, Micrococcus, Flavobacterium, Serratia, Enterococcus, and Pseudomonas species were predominant bacteria while Aspergillus, Fusarium, Mucor, Penicillium, and Rhizopus were the dominant fungal genera isolated. Streptomyces and Norcadia were the actinomycetes genera isolated. The particle size analysis showed high sand fraction but low silt and clay. The pH and % organic matter were generally acidic and low, respectively at all locations. Calcium dominated the exchangeable bases with low electrical conductivity and micronutrients. These results provide the baseline data of Eket wetland soils for its management for sustainable agriculture.