Meta Model Based EA for Complex Optimization

Evolutionary Algorithms are population-based, stochastic search techniques, widely used as efficient global optimizers. However, many real life optimization problems often require finding optimal solution to complex high dimensional, multimodal problems involving computationally very expensive fitness function evaluations. Use of evolutionary algorithms in such problem domains is thus practically prohibitive. An attractive alternative is to build meta models or use an approximation of the actual fitness functions to be evaluated. These meta models are order of magnitude cheaper to evaluate compared to the actual function evaluation. Many regression and interpolation tools are available to build such meta models. This paper briefly discusses the architectures and use of such meta-modeling tools in an evolutionary optimization context. We further present two evolutionary algorithm frameworks which involve use of meta models for fitness function evaluation. The first framework, namely the Dynamic Approximate Fitness based Hybrid EA (DAFHEA) model [14] reduces computation time by controlled use of meta-models (in this case approximate model generated by Support Vector Machine regression) to partially replace the actual function evaluation by approximate function evaluation. However, the underlying assumption in DAFHEA is that the training samples for the metamodel are generated from a single uniform model. This does not take into account uncertain scenarios involving noisy fitness functions. The second model, DAFHEA-II, an enhanced version of the original DAFHEA framework, incorporates a multiple-model based learning approach for the support vector machine approximator to handle noisy functions [15]. Empirical results obtained by evaluating the frameworks using several benchmark functions demonstrate their efficiency

Learning to Recognize Faces by Local Feature Design and Selection

Studies in neuroscience suggest that both global and local feature information are crucial for perception and recognition of faces. It is widely believed that local feature is less sensitive to variations caused by illumination, expression and illumination. In this paper, we target at designing and learning local features for face recognition. We designed three types of local features. They are semi-global feature, local patch feature and tangent shape feature. The designing of semi-global feature aims at taking advantage of global-like feature and meanwhile avoiding suppressing AdaBoost algorithm in boosting weak classifies established from small local patches. The designing of local patch feature targets at automatically selecting discriminative features, and is thus different with traditional ways, in which local patches are usually selected manually to cover the salient facial components. Also, shape feature is considered in this paper for frontal view face recognition. These features are selected and combined under the framework of boosting algorithm and cascade structure. The experimental results demonstrate that the proposed approach outperforms the standard eigenface method and Bayesian method. Moreover, the selected local features and observations in the experiments are enlightening to researches in local feature design in face recognition.

Two-Stage Compensator Designs with Partial Feedbacks

The two-stage compensator designs of linear system are investigated in the framework of the factorization approach. First, we give “full feedback" two-stage compensator design. Based on this result, various types of the two-stage compensator designs with partial feedbacks are derived.

The Application of Six Sigma to Integration of Computer Based Systems

This paper introduces a process for the module level integration of computer based systems. It is based on the Six Sigma Process Improvement Model, where the goal of the process is to improve the overall quality of the system under development. We also present a conceptual framework that shows how this process can be implemented as an integration solution. Finally, we provide a partial implementation of key components in the conceptual framework.

Design an Electronic Market Framework Using JADE Environment

The daily growing use of agents in software environments, because of many reasons such as independence and intelligence is not a secret anymore. One of such environments in which there is a prominent job for the agents would be emarketplaces in which a user is able to give those agents the responsibility of buying and selling, instead of searching the emarketplace himself. Making up a framework which has sufficient attention to the required roles and their relations, is the first step of achieving such e-markets. In this paper, we suggest a framework in order to establish such e-markets and we will continue investigating the roles such as seller or buyer and the relations in JADE environment in details.

A Mobile Multihop Relay Dynamic TDD Scheme for Cellular Networks

In this paper, we present an analytical framework for the evaluation of the uplink performance of multihop cellular networks based on dynamic time division duplex (TDD). New wireless broadband protocols, such as WiMAX, WiBro, and 3G-LTE apply TDD, and mobile communication protocols under standardization (e.g., IEEE802.16j) are investigating mobile multihop relay (MMR) as a future technology. In this paper a novel MMR TDD scheme is presented, where the dynamic range of the frame is shared to traffic resources of asymmetric nature and multihop relaying. The mobile communication channel interference model comprises of inner and co-channel interference (CCI). The performance analysis focuses on the uplink due to the fact that the effects of dynamic resource allocation show significant performance degradation only in the uplink compared to time division multiple access (TDMA) schemes due to CCI [1-3], where the downlink results to be the same or better.The analysis was based on the signal to interference power ratio (SIR) outage probability of dynamic TDD (D-TDD) and TDMA systems,which are the most widespread mobile communication multi-user control techniques. This paper presents the uplink SIR outage probability with multihop results and shows that the dynamic TDD scheme applying MMR can provide a performance improvement compared to single hop applications if executed properly.

Towards An Extended International HRM Model for Emerging Multinational Enterprises

This paper critiques several exiting strategic international human resource management (SIHRM) frameworks and discusses their limitations to apply directly to emerging multinational enterprises (EMNEs), especially those generated from China and other BRICS nations. To complement the existing SIHRM frameworks, key variables relevant to emerging economies are identified and the extended model with particular reference to EMNEs is developed with several research propositions. It is believed that the extended model would better capture the recent development of MNEs in transition, and alert emerging international managers to address several human resource management challenges in the global context

Optimal Path Planning under Priori Information in Stochastic, Time-varying Networks

A novel path planning approach is presented to solve optimal path in stochastic, time-varying networks under priori traffic information. Most existing studies make use of dynamic programming to find optimal path. However, those methods are proved to be unable to obtain global optimal value, moreover, how to design efficient algorithms is also another challenge. This paper employs a decision theoretic framework for defining optimal path: for a given source S and destination D in urban transit network, we seek an S - D path of lowest expected travel time where its link travel times are discrete random variables. To solve deficiency caused by the methods of dynamic programming, such as curse of dimensionality and violation of optimal principle, an integer programming model is built to realize assignment of discrete travel time variables to arcs. Simultaneously, pruning techniques are also applied to reduce computation complexity in the algorithm. The final experiments show the feasibility of the novel approach.

Quantitative Evaluation of Frameworks for Web Applications

An empirical study of web applications that use software frameworks is presented here. The analysis is based on two approaches. In the first, developers using such frameworks are required, based on their experience, to assign weights to parameters such as database connection. In the second approach, a performance testing tool, OpenSTA, is used to compute start time and other such measures. From such an analysis, it is concluded that open source software is superior to proprietary software. The motivation behind this research is to examine ways in which a quantitative assessment can be made of software in general and frameworks in particular. Concepts such as metrics and architectural styles are discussed along with previously published research.

Compiler-Based Architecture for Context Aware Frameworks

Computers are being integrated in the various aspects of human every day life in different shapes and abilities. This fact has intensified a requirement for the software development technologies which is ability to be: 1) portable, 2) adaptable, and 3) simple to develop. This problem is also known as the Pervasive Computing Problem (PCP) which can be implemented in different ways, each has its own pros and cons and Context Oriented Programming (COP) is one of the methods to address the PCP. In this paper a design for a COP framework, a context aware framework, is presented which has eliminated weak points of a previous design based on interpreter languages, while introducing the compiler languages power in implementing these frameworks. The key point of this improvement is combining COP and Dependency Injection (DI) techniques. Both old and new frameworks are analyzed to show advantages and disadvantages. Finally a simulation of both designs is proposed to indicating that the practical results agree with the theoretical analysis while the new design runs almost 8 times faster.

Evaluation Framework for Agent-Oriented Methodologies

Many agent-oriented software engineering methodologies have been proposed for software developing; however their application is still limited due to their lack of maturity. Evaluating the strengths and weaknesses of these methodologies plays an important role in improving them and in developing new stronger methodologies. This paper presents an evaluation framework for agent-oriented methodologies, which addresses six major areas: concepts, notation, process, pragmatics, support for software engineering and marketability. The framework is then used to evaluate the Gaia methodology to identify its strengths and weaknesses, and to prove the ability of the framework for promoting the agent-oriented methodologies by detecting their weaknesses in detail.

Hierarchical PSO-Adaboost Based Classifiers for Fast and Robust Face Detection

We propose a fast and robust hierarchical face detection system which finds and localizes face images with a cascade of classifiers. Three modules contribute to the efficiency of our detector. First, heterogeneous feature descriptors are exploited to enrich feature types and feature numbers for face representation. Second, a PSO-Adaboost algorithm is proposed to efficiently select discriminative features from a large pool of available features and reinforce them into the final ensemble classifier. Compared with the standard exhaustive Adaboost for feature selection, the new PSOAdaboost algorithm reduces the training time up to 20 times. Finally, a three-stage hierarchical classifier framework is developed for rapid background removal. In particular, candidate face regions are detected more quickly by using a large size window in the first stage. Nonlinear SVM classifiers are used instead of decision stump functions in the last stage to remove those remaining complex nonface patterns that can not be rejected in the previous two stages. Experimental results show our detector achieves superior performance on the CMU+MIT frontal face dataset.

Data Oriented Model of Image: as a Framework for Image Processing

This paper presents a new data oriented model of image. Then a representation of it, ADBT, is introduced. The ability of ADBT is clustering, segmentation, measuring similarity of images etc, with desired precision and corresponding speed.