B-VIS Service-oriented Middleware for RFID Sensor Network

One of the most importance of intelligence in-car and roadside systems is the cooperative vehicle-infrastructure system. In Thailand, ITS technologies are rapidly growing and real-time vehicle information is considerably needed for ITS applications; for example, vehicle fleet tracking and control and road traffic monitoring systems. This paper defines the communication protocols and software design for middleware components of B-VIS (Burapha Vehicle-Infrastructure System). The proposed B-VIS middleware architecture serves the needs of a distributed RFID sensor network and simplifies some intricate details of several communication standards.

Hydrodynamic Characteristics of Dry Beneficiation of Iron Ore and Coal in a Fast Fluidized Bed

Iron ore and coal are the two major important raw materials being used in Iron making industries. Usually ore fines containing around 5% Alumina are rejected due to higher proportion of alumina. Therefore, a technology or process which may reduce the alumina content by 2% by beneficiation process will be highly attractive . In addition fine coals with ash content is used nearly 12% is directly injected in blast furnace. Fast fluidization is a technology by using dry beneficiation of coal and iron ore can be done. During the fluidization process the iron ore band coal is fluidized at high velocity in the riser of a fast fluidized bed, the heavier and coarse particles is generally settled at the bottom in a dense zone of the riser while the finer and lighter particle are entrained to the top dilute zone and then via a cyclone is fed back to the bottom of the riser column. Most of the alumina and low ash fine size coals being lighter are expected to move up to the riser and by a natural beneficiation of ores is expected to take place in the riser. Therefore in this study an attempt has been made for dry beneficiation of iron ore and coal in a fluidized bed and its hydrodynamic characterization.

Selection of Extracurricular Education Facilities and Organizational Performance Analysis of Meg-city Spatial System

With the rapid expansion of city scale and the excessive concentration of population, achieving relative equality of extracurricular education resources and improving spatial service performance of relevant facilities become necessary arduous tasks. In urban space, extracurricular education facilities should offer better service to its targeted area and promote the equality and efficiency of education, which is accomplished by the allocation of facilities. Based on questionnaire and survey for local students in Hangzhou City in 2009, this study classifies extracurricular education facilities in meg-city and defines the equalization of these facilities. Then it is suggested to establish extracurricular education facilities system according to the development level of city and demands of local students, and to introduce a spatial analysis method into urban planning through the aspects of spatial distribution, travel cost and spatial service scope. Finally, the practice of nine sub-districts of Hangzhou is studied.

Optimization of Supersonic Ejector via Sequence-Adapted Micro-Genetic Algorithm

In this study, an optimization of supersonic air-to-air ejector is carried out by a recently developed single-objective genetic algorithm based on adaption of sequence of individuals. Adaptation of sequence is based on Shape-based distance of individuals and embedded micro-genetic algorithm. The optimal sequence found defines the succession of CFD-aimed objective calculation within each generation of regular micro-genetic algorithm. A spring-based deformation mutates the computational grid starting the initial individualvia adapted population in the optimized sequence. Selection of a generation initial individual is knowledge-based. A direct comparison of the newly defined and standard micro-genetic algorithm is carried out for supersonic air-to-air ejector. The only objective is to minimize the loose of total stagnation pressure in the ejector. The result is that sequence-adopted micro-genetic algorithm can provide comparative results to standard algorithm but in significantly lower number of overall CFD iteration steps.

The Role of the Indigenous Languages in Policy Planning and Implementation: A Sociolinguistic Appraisal of the National Rebranding Programme of Nigeria

The nexus between language and culture is so intertwined and very significant that language is largely seen as a vehicle for cultural transmission. Culture itself refers to the aggregate belief system of a people, embellishing its corporate national image or brand. If we conceive national rebranding as a campaign to rekindle the patriotic flame in the consciousness of a people towards its sociocultural imperatives and values, then, Nigerian indigenous linguistic flame has not been ignited. Consequently, the paper contends that the current national rebranding policy remains a myth in the confines of the elitists' intellectual squabble. It however recommends that the use of our indigenous languages should be supported by adequate legislation and also propagated by Nollywood in order to revamp and sustain the people’s interest in their local languages. Finally, the use of the indigenous Nigerian languages demonstrates patriotism, an important ingredient for actualizing a genuine national rebranding.

Intelligent Path Planning for Rescue Robot

In this paper, a heuristic method for simultaneous rescue robot path-planning and mission scheduling is introduced based on project management techniques, multi criteria decision making and artificial potential fields path-planning. Groups of injured people are trapped in a disastrous situation. These people are categorized into several groups based on the severity of their situation. A rescue robot, whose ultimate objective is reaching injured groups and providing preliminary aid for them through a path with minimum risk, has to perform certain tasks on its way towards targets before the arrival of rescue team. A decision value is assigned to each target based on the whole degree of satisfaction of the criteria and duties of the robot toward the target and the importance of rescuing each target based on their category and the number of injured people. The resulted decision value defines the strength of the attractive potential field of each target. Dangerous environmental parameters are defined as obstacles whose risk determines the strength of the repulsive potential field of each obstacle. Moreover, negative and positive energies are assigned to the targets and obstacles, which are variable with respects to the factors involved. The simulation results show that the generated path for two cases studies with certain differences in environmental conditions and other risk factors differ considerably.

Adaptive Gaussian Mixture Model for Skin Color Segmentation

Skin color based tracking techniques often assume a static skin color model obtained either from an offline set of library images or the first few frames of a video stream. These models can show a weak performance in presence of changing lighting or imaging conditions. We propose an adaptive skin color model based on the Gaussian mixture model to handle the changing conditions. Initial estimation of the number and weights of skin color clusters are obtained using a modified form of the general Expectation maximization algorithm, The model adapts to changes in imaging conditions and refines the model parameters dynamically using spatial and temporal constraints. Experimental results show that the method can be used in effectively tracking of hand and face regions.

Parametric Study of Confined Turbulent Impinging Slot Jets upon a Flat Plate

In the present paper, a numerical investigation has been carried out to classify and clarify the effects of paramount parameters on turbulent impinging slot jets. The effects of nozzle-s exit turbulent intensity, distance between nozzle and impinging plate are studied at Reynolds number 5000 and 20000. In addition, the effect of Mach number that is varied between 0.3-0.8 at a constant Reynolds number 133000 is investigated to elucidate the effect of compressibility in impinging jet upon a flat plate. The wall that is located at the same level with nozzle-s exit confines the flow. A compressible finite volume solver is implemented for simulation the flow behavior. One equation Spalart-Allmaras turbulent model is used to simulate turbulent flow at this study. Assessment of the Spalart-Allmaras turbulent model at high nozzle to plate distance, and giving enough insights to characterize the effect of Mach number at high Reynolds number for the complex impinging jet flow are the remarkable results of this study.

A New Version of Annotation Method with a XML-based Knowledge Base

Machine-understandable data when strongly interlinked constitutes the basis for the SemanticWeb. Annotating web documents is one of the major techniques for creating metadata on the Web. Annotating websitexs defines the containing data in a form which is suitable for interpretation by machines. In this paper, we present a better and improved approach than previous [1] to annotate the texts of the websites depends on the knowledge base.

An Effective Framework for Chinese Syntactic Parsing

This paper presents an effective framework for Chinesesyntactic parsing, which includes two parts. The first one is a parsing framework, which is based on an improved bottom-up chart parsingalgorithm, and integrates the idea of the beam search strategy of N bestalgorithm and heuristic function of A* algorithm for pruning, then get multiple parsing trees. The second is a novel evaluation model, which integrates contextual and partial lexical information into traditional PCFG model and defines a new score function. Using this model, the tree with the highest score is found out as the best parsing tree. Finally,the contrasting experiment results are given. Keywords?syntactic parsing, PCFG, pruning, evaluation model.

The Cost Structure of Intermodal Transportation: The Chilean Case

This study defines a methodology to compute unitary costs for freight transportation modes. The main objective was to gather relevant costs data to support the formulation and evaluation of railway, road, pipelines and port projects. This article will concentrate on the following steps: Compilation and analysis of relevant modal cost studies, Methodological adjustments to make cost figures comparable between studies, Definition of typology and scope of transportation modes, Analysis and validation of cost values for relevant freight transportation modes in Chile. In order to define the comparison methodology for the costs between the different transportation modes, it was necessary to consider that the relevant cost depends on who performs the comparison. Thus, for the transportation user (e.g. exporter) the pertinent costs are the mode tariffs, whereas from the operators perspective (e.g. rail manager), the pertinent costs are the operating costs of each mode.

The Model of the Genre of Literary Portrait in Modern Literary Criticism

In modern literary criticism the problem of genre is one of discussion. Genre is a phenomenon, located in the intersection of the synchronous and diachronic processes in the development of literature, and this is due to the complexity of its solutions. It defines the place of contact between literary works and literary process.

An Efficient MIPv6 Return Routability Scheme Based on Geometric Computing

IETF defines mobility support in IPv6, i.e. MIPv6, to allow nodes to remain reachable while moving around in the IPv6 internet. When a node moves and visits a foreign network, it is still reachable through the indirect packet forwarding from its home network. This triangular routing feature provides node mobility but increases the communication latency between nodes. This deficiency can be overcome by using a Binding Update (BU) scheme, which let nodes keep up-to-date IP addresses and communicate with each other through direct IP routing. To further protect the security of BU, a Return Routability (RR) procedure was developed. However, it has been found that RR procedure is vulnerable to many attacks. In this paper, we will propose a lightweight RR procedure based on geometric computing. In consideration of the inherent limitation of computing resources in mobile node, the proposed scheme is developed to minimize the cost of computations and to eliminate the overhead of state maintenance during binding updates. Compared with other CGA-based BU schemes, our scheme is more efficient and doesn-t need nonce tables in nodes.

Identifying Blind Spots in a Stereo View for Early Decisions in SI for Fusion based DMVC

In DMVC, we have more than one options of sources available for construction of side information. The newer techniques make use of both the techniques simultaneously by constructing a bitmask that determines the source of every block or pixel of the side information. A lot of computation is done to determine each bit in the bitmask. In this paper, we have tried to define areas that can only be well predicted by temporal interpolation and not by multiview interpolation or synthesis. We predict that all such areas that are not covered by two cameras cannot be appropriately predicted by multiview synthesis and if we can identify such areas in the first place, we don-t need to go through the script of computations for all the pixels that lie in those areas. Moreover, this paper also defines a technique based on KLT to mark the above mentioned areas before any other processing is done on the side view.

The Data Processing Electronics of the METIS Coronagraph aboard the ESA Solar Orbiter Mission

METIS is the Multi Element Telescope for Imaging and Spectroscopy, a Coronagraph aboard the European Space Agency-s Solar Orbiter Mission aimed at the observation of the solar corona via both VIS and UV/EUV narrow-band imaging and spectroscopy. METIS, with its multi-wavelength capabilities, will study in detail the physical processes responsible for the corona heating and the origin and properties of the slow and fast solar wind. METIS electronics will collect and process scientific data thanks to its detectors proximity electronics, the digital front-end subsystem electronics and the MPPU, the Main Power and Processing Unit, hosting a space-qualified processor, memories and some rad-hard FPGAs acting as digital controllers.This paper reports on the overall METIS electronics architecture and data processing capabilities conceived to address all the scientific issues as a trade-off solution between requirements and allocated resources, just before the Preliminary Design Review as an ESA milestone in April 2012.

Refinement of Object-Z Specifications Using Morgan-s Refinement Calculus

Morgan-s refinement calculus (MRC) is one of the well-known methods allowing the formality presented in the program specification to be continued all the way to code. On the other hand, Object-Z (OZ) is an extension of Z adding support for classes and objects. There are a number of methods for obtaining code from OZ specifications that can be categorized into refinement and animation methods. As far as we know, only one refinement method exists which refines OZ specifications into code. However, this method does not have fine-grained refinement rules and thus cannot be automated. On the other hand, existing animation methods do not present mapping rules formally and do not support the mapping of several important constructs of OZ, such as all cases of operation expressions and most of constructs in global paragraph. In this paper, with the aim of providing an automatic path from OZ specifications to code, we propose an approach to map OZ specifications into their counterparts in MRC in order to use fine-grained refinement rules of MRC. In this way, having counterparts of our specifications in MRC, we can refine them into code automatically using MRC tools such as RED. Other advantages of our work pertain to proposing mapping rules formally, supporting the mapping of all important constructs of Object-Z, and considering dynamic instantiation of objects while OZ itself does not cover this facility.

Moving From Problem Space to Solution Space

Extracting and elaborating software requirements and transforming them into viable software architecture are still an intricate task. This paper defines a solution architecture which is based on the blurred amalgamation of problem space and solution space. The dependencies between domain constraints, requirements and architecture and their importance are described that are to be considered collectively while evolving from problem space to solution space. This paper proposes a revised version of Twin Peaks Model named Win Peaks Model that reconciles software requirements and architecture in more consistent and adaptable manner. Further the conflict between stakeholders- win-requirements is resolved by proposed Voting methodology that is simple adaptation of win-win requirements negotiation model and QARCC.

Combining the Description Features of UMLRT and CSP+T Specifications Applied to a Complete Design of Real-Time Systems

UML is a collection of notations for capturing a software system specification. These notations have a specific syntax defined by the Object Management Group (OMG), but many of their constructs only present informal semantics. They are primarily graphical, with textual annotation. The inadequacies of standard UML as a vehicle for complete specification and implementation of real-time embedded systems has led to a variety of competing and complementary proposals. The Real-time UML profile (UML-RT), developed and standardized by OMG, defines a unified framework to express the time, scheduling and performance aspects of a system. We present in this paper a framework approach aimed at deriving a complete specification of a real-time system. Therefore, we combine two methods, a semiformal one, UML-RT, which allows the visual modeling of a realtime system and a formal one, CSP+T, which is a design language including the specification of real-time requirements. As to show the applicability of the approach, a correct design of a real-time system with hard real time constraints by applying a set of mapping rules is obtained.

Utilization of Glycerol Derived from Jatropha-s Biodiesel Production as a Cement Grinding Aid

Biodiesel production results in glycerol production as the main by-product in biodiesel industry.One of the utilizations of glycerol obtained from biodiesel production is as a cement grinding aid (CGA). Results showed that crude glycerol content was 40.19% whereas pure glycerol content was 82.15%. BSS value of the cement with CGA supplementation was higher than that of nonsupplemented cement (blank) indicating that CGA-supplemented cement had higher fineness than the non-supplemented one. It was also found that pure glycerol 95% and TEA 5% at 80ºC was the optimum CGA used to result in finest cement with BSS value of 4.836 cm2/g. Residue test showed that the smallest percent residue value (0.11%) was obtained in cement with supplementation of pure glycerol 95% and TEA 5%. Results of residue test confirmed those of BSS test showing that cement with supplementation of pure glycerol 95% and TEA 5% had the finest particle size.

Cross-Cultural Strategies for Web Design

People from different cultures favor web pages characterized by the values of their culture and, therefore, tend to prefer different characteristics of a website according to their cultural values in terms of navigation, security, product information, customer service, shopping and design tools. For a company aiming to globalize its market it is useful to implement country specific cultural interfaces and different web sites for countries with different cultures. This paper, following the conclusions proposed by two models of Hall and Hofstede, and the studies of Marcus and Gould, defines, through an empirical analysis, the guidelines of web design for both the Scandinavian countries and Malaysia.