Simulation of Enhanced Biomass Gasification for Hydrogen Production using iCON

Due to the environmental and price issues of current energy crisis, scientists and technologists around the globe are intensively searching for new environmentally less-impact form of clean energy that will reduce the high dependency on fossil fuel. Particularly hydrogen can be produced from biomass via thermochemical processes including pyrolysis and gasification due to the economic advantage and can be further enhanced through in-situ carbon dioxide removal using calcium oxide. This work focuses on the synthesis and development of the flowsheet for the enhanced biomass gasification process in PETRONAS-s iCON process simulation software. This hydrogen prediction model is conducted at operating temperature between 600 to 1000oC at atmospheric pressure. Effects of temperature, steam-to-biomass ratio and adsorbent-to-biomass ratio were studied and 0.85 mol fraction of hydrogen is predicted in the product gas. Comparisons of the results are also made with experimental data from literature. The preliminary economic potential of developed system is RM 12.57 x 106 which equivalent to USD 3.77 x 106 annually shows economic viability of this process.

A C1-Conforming Finite Element Method for Nonlinear Fourth-Order Hyperbolic Equation

In this paper, the C1-conforming finite element method is analyzed for a class of nonlinear fourth-order hyperbolic partial differential equation. Some a priori bounds are derived using Lyapunov functional, and existence, uniqueness and regularity for the weak solutions are proved. Optimal error estimates are derived for both semidiscrete and fully discrete schemes.

A Survey: Clustering Ensembles Techniques

The clustering ensembles combine multiple partitions generated by different clustering algorithms into a single clustering solution. Clustering ensembles have emerged as a prominent method for improving robustness, stability and accuracy of unsupervised classification solutions. So far, many contributions have been done to find consensus clustering. One of the major problems in clustering ensembles is the consensus function. In this paper, firstly, we introduce clustering ensembles, representation of multiple partitions, its challenges and present taxonomy of combination algorithms. Secondly, we describe consensus functions in clustering ensembles including Hypergraph partitioning, Voting approach, Mutual information, Co-association based functions and Finite mixture model, and next explain their advantages, disadvantages and computational complexity. Finally, we compare the characteristics of clustering ensembles algorithms such as computational complexity, robustness, simplicity and accuracy on different datasets in previous techniques.

Pyrolysis of Rice Husk in a Fixed Bed Reactor

Fixed-bed slow pyrolysis experiments of rice husk have been conducted to determine the effect of pyrolysis temperature, heating rate, particle size and reactor length on the pyrolysis product yields. Pyrolysis experiments were performed at pyrolysis temperature between 400 and 600°C with a constant heating rate of 60°C/min and particle sizes of 0.60-1.18 mm. The optimum process conditions for maximum liquid yield from the rice husk pyrolysis in a fixed bed reactor were also identified. The highest liquid yield was obtained at a pyrolysis temperature of 500°C, particle size of 1.18-1.80 mm, with a heating rate of 60°C/min in a 300 mm length reactor. The obtained yield of, liquid, gas and solid were found be in the range of 22.57-31.78 %, 27.75-42.26 % and 34.17-42.52 % (all weight basics) respectively at different pyrolysis conditions. The results indicate that the effects of pyrolysis temperature and particle size on the pyrolysis yield are more significant than that of heating rate and reactor length. The functional groups and chemical compositions present in the liquid obtained at optimum conditions were identified by Fourier Transform-Infrared (FT-IR) spectroscopy and Gas Chromatography/ Mass Spectroscopy (GC/MS) analysis respectively.

Optimization of Petroleum Refinery Configuration Design with Logic Propositions

This work concerns the topological optimization problem for determining the optimal petroleum refinery configuration. We are interested in further investigating and hopefully advancing the existing optimization approaches and strategies employing logic propositions to conceptual process synthesis problems. In particular, we seek to contribute to this increasingly exciting area of chemical process modeling by addressing the following potentially important issues: (a) how the formulation of design specifications in a mixed-logical-and-integer optimization model can be employed in a synthesis problem to enrich the problem representation by incorporating past design experience, engineering knowledge, and heuristics; and (b) how structural specifications on the interconnectivity relationships by space (states) and by function (tasks) in a superstructure should be properly formulated within a mixed-integer linear programming (MILP) model. The proposed modeling technique is illustrated on a case study involving the alternative processing routes of naphtha, in which significant improvement in the solution quality is obtained.

The Advantages of Integration for Social Systems – Evidence from the Automobile Industry

The Japanese integrative approach to social systems can be observed in supply chain management as well as in the relationship between public and private sectors. Both the Lean Production System and the Developmental State Model are characterized by efforts towards the achievement of mutual goals, resulting in initiatives for capacity building which emphasize the system level. In Brazil, although organizations undertake efforts to build capabilities at the individual and organizational levels, the system level is being neglected. Fieldwork data confirmed the findings of other studies in terms of the lack of integration in supply chain management in the Brazilian automobile industry. Moreover, due to the absence of an active role of the Brazilian state in its relationship with the private sector, automakers are not fully exploiting the opportunities in the domestic and regional markets. For promoting a higher level of economic growth as well as to increase the degree of spill-over of technologies and techniques, a more integrative approach is needed.

Scenarios of Societal Security and Business Continuity Cycles

Societal security, continuity scenarios and methodological cycling approach explained in this article. Namely societal security organizational challenges ask implementation of international standards BS 25999-2 & global ISO 22300 which is a family of standards for business continuity management system. Efficient global organization system is distinguished of high entity´s complexity, connectivity & interoperability, having not only cooperative relations in a fact. Competing business have numerous participating ´enemies´, which are in apparent or hidden opponent and antagonistic roles with prosperous organization system, resulting to a crisis scene or even to a battle theatre. Organization business continuity scenarios are necessary for such ´a play´ preparedness, planning, management & overmastering in real environments.

DEA ANN Approach in Supplier Evaluation System

In Supply Chain Management (SCM), strengthening partnerships with suppliers is a significant factor for enhancing competitiveness. Hence, firms increasingly emphasize supplier evaluation processes. Supplier evaluation systems are basically developed in terms of criteria such as quality, cost, delivery, and flexibility. Because there are many variables to be analyzed, this process becomes hard to execute and needs expertise. On this account, this study aims to develop an expert system on supplier evaluation process by designing Artificial Neural Network (ANN) that is supported with Data Envelopment Analysis (DEA). The methods are applied on the data of 24 suppliers, which have longterm relationships with a medium sized company from German Iron and Steel Industry. The data of suppliers consists of variables such as material quality (MQ), discount of amount (DOA), discount of cash (DOC), payment term (PT), delivery time (DT) and annual revenue (AR). Meanwhile, the efficiency that is generated by using DEA is added to the supplier evaluation system in order to use them as system outputs.

A Review of Methanol Production from Methane Oxidation via Non-Thermal Plasma Reactor

Direct conversion of methane to methanol by partial oxidation in a thermal reactor has a poor yield of about 2% which is less than the expected economical yield of about 10%. Conventional thermal catalytic reactors have been proposed to be superseded by plasma reactors as a promising approach, due to strength of the electrical energy which can break C-H bonds of methane. Among the plasma techniques, non-thermal dielectric barrier discharge (DBD) plasma chemical process is one of the most future promising technologies in synthesizing methanol. The purpose of this paper is presenting a brief review of CH4 oxidation with O2 in DBD plasma reactors based on the recent investigations. For this reason, the effect of various parameters of reactor configuration, feed ratio, applied voltage, residence time (gas flow rate), type of applied catalyst, pressure and reactor wall temperature on methane conversion and methanol selectivity are discussed.

Study of γ Irradiation and Storage Time on Microbial Load and Chemical Quality of Persian Saffron

Irradiation is considered one of the most efficient technological processes for the reduction of microorganisms in food. It can be used to improve the safety of food products, and to extend their shelf lives. The aim of this study was to evaluate the effects of gamma irradiation for improvement of saffron shelf life. Samples were treated with 0 (none irradiated), 1.0, 2.0, 3.0 and 4.0 kGy of gamma irradiation and held for 2 months. The control and irradiated samples were underwent microbial analysis, chemical characteristics and sensory evaluation at 30 days intervals. Microbial analysis indicated that irradiation had a significant effect (P < 0.05) on the reduction of microbial loads. There was no significant difference in sensory quality and chemical characteristics during storage in saffron.

Analyzing the Relation of Community Group for Research Paper Bookmarking by Using Association Rule

Currently searching through internet is very popular especially in a field of academic. A huge of educational information such as research papers are overload for user. So community-base web sites have been developed to help user search information more easily from process of customizing a web site to need each specifies user or set of user. In this paper propose to use association rule analyze the community group on research paper bookmarking. A set of design goals for community group frameworks is developed and discussed. Additionally Researcher analyzes the initial relation by using association rule discovery between the antecedent and the consequent of a rule in the groups of user for generate the idea to improve ranking search result and development recommender system.

Do Cultural Differences in Successful ERP Implementations Exist?

Using a methodology grounded in business process change theory, we investigate the critical success factors that affect ERP implementation success in United States and India. Specifically, we examine the ERP implementation at two case study companies, one in each country. Our findings suggest that certain factors that affect the success of ERP implementations are not culturally bound, whereas some critical success factors depend on the national culture of the country in which the system is being implemented. We believe that the understanding of these critical success factors will deepen the understanding of ERP implementations and will help avoid implementation mistakes, thereby increasing the rate of success in culturally different contexts. Implications of the findings and future research directions for both academicians and practitioners are also discussed.

Effects of Dopant Concentrations on Radiative Properties of Nanoscale Multilayer with Coherent Formulation for Visible Wavelengths

Semiconductor materials with coatings have a wide range of applications in MEMS and NEMS. This work uses transfermatrix method for calculating the radiative properties. Dopped silicon is used and the coherent formulation is applied. The Drude model for the optical constants of doped silicon is employed. Results showed that for the visible wavelengths, more emittance occurs in greater concentrations and the reflectance decreases as the concentration increases. In these wavelengths, transmittance is negligible. Donars and acceptors act similar in visible wavelengths. The effect of wave interference can be understood by plotting the spectral properties such as reflectance or transmittance of a thin dielectric film versus the film thickness and analyzing the oscillations of properties due to constructive and destructive interferences. But this effect has not been shown at visible wavelengths. At room temperature, the scattering process is dominated by lattice scattering for lightly doped silicon, and the impurity scattering becomes important for heavily doped silicon when the dopant concentration exceeds1018cm-3 .

Optimal Green Facility Planning - Implementation of Organic Rankine Cycle System for Factory Waste Heat Recovery

As global industry developed rapidly, the energy demand also rises simultaneously. In the production process, there’s a lot of energy consumed in the process. Formally, the energy used in generating the heat in the production process. In the total energy consumption, 40% of the heat was used in process heat, mechanical work, chemical energy and electricity. The remaining 50% were released into the environment. It will cause energy waste and environment pollution. There are many ways for recovering the waste heat in factory. Organic Rankine Cycle (ORC) system can produce electricity and reduce energy costs by recovering the waste of low temperature heat in the factory. In addition, ORC is the technology with the highest power generating efficiency in low-temperature heat recycling. However, most of factories executives are still hesitated because of the high implementation cost of the ORC system, even a lot of heat are wasted. Therefore, this study constructs a nonlinear mathematical model of waste heat recovery equipment configuration to maximize profits. A particle swarm optimization algorithm is developed to generate the optimal facility installation plan for the ORC system.

The Effect of TV and Online Shopping Value on Online Patronage Intention in a Multi-channel Retail Context

With the proliferation of multi-channel retailing, developing a better understanding of the factors that affect customers- purchase behaviors within a multi-channel retail context has become an important topic for practitioners and academics. While many studies have investigated the various customer behaviors associated with brick-and-mortar retailing, online retailing, and brick-and-click retailing, little research has explored how customer shopping value perceptions influence online purchase behaviors within the TV-and-online retail environment. The main purpose of this study is to investigate the influence of TV and online shopping values on online patronage intention. Data collected from 116 respondents in Taiwan are tested against the research model using the partial least squares (PLS) approach. The results indicate that utilitarian and hedonic TV shopping values have indirect, positive influences on online patronage intention through their online counterparts in the TV-and-online retail context. The findings of this study provide several important theoretical and practical implications for multi-channel retailing.

Investigating the Effectiveness of Iranian Architecture on Sustainable Space Creation

lack of convenience condition is one of the problems in open spaces in hot and dry regions. Nowadays parks and green landscapes was designed and constructed without any attention to convenience condition. If this process continues, Citizens will encounter with some problems. Harsh climatic condition decreases the efficiency of people-s activities. However there is hard environment condition in hot and dry regions, Convenience condition has been provided in Iranian traditional architecture by using techniques and methods. In this research at the first step characteristics of Iranian garden that can effect on creating sustainable spaces were investigated through observation method. Pleasure space in cities will be created with using these methods and techniques in future cities. Furthermore the comparison between Iranian garden and landscape in today-s cities demonstrate the effectiveness of Iranian garden characteristics on sustainable spaces. Iranian architects used simple and available methods for creating open architectural spaces. In addition desirable conditions were provided with taking in to account both physically and spiritually. Parks and landscapes in future cities can be designed and constructed with respect to architectural techniques that used in Iranian gardens in hot and arid regions.

Assessment of Health Risks to Ground Water Resources for the Emergency Supply of Population in Relation to the Content of Nitrates and Nitrites

The contents of nitrates and nitrites were monitored in 15 ground water resources of a selected region earmarked for the emergency supply of population. The resources have been selected on the basis of previous assessment of natural conditions and the exploitation of territory in the infiltration area as well as the surroundings of water resources. The health risk analysis carried out in relation to nitrates and nitrites, which were found to be the most serious water contaminants, proved, that 14 resources met the health standards in relation to the assessed criterion and could be included in crisis plans. Water quality of ground resources may be assessed in the same way with regard to other contaminants.

Current Situation and Possible Solutions of Acid Rain in South Korea

Environmental statistics reveals that the pollution of acid rain in South Korea is a serious issue. Yet the awareness of people is low. Even after a gradual decrease of pollutant emission in Korea, the acidity has not been reduced. There no boundaries in the atmosphere are set and the influence of the neighboring countries such as China is apparent. Governmental efforts among China, Japan and Korea have been made on this issue. However, not much progress has been observed. Along with the governmental activities, therefore, an active monitoring of the pollution among the countries and the promotion of environmental awareness at the civil level including especially the middle and high schools are highly recommended. It will be this young generation who will face damaged country as inheritance not the current generation.

Critical Issues of Inclusion of Aviation in EU Emissions Trading System

This paper dissertates about issues which may occur after next year will be major part of civil aviation in EU included into system of Emission trading. This system should help to fight against global warming and to fulfill Kyoto Protocol commitments of European countries. Main issues mentioned in this paper are connected with problem of radiative forcing from emissions and lack of their monitoring and charging in EU legislative. There are mentioned main differences between industrial emissions and emissions form aviation with notification about possible negative impacts of neglecting these differences. Special attention is dedicated to risk of possible reverse effect of inclusion aviation in EU ETS, which may theoretically occur.

Experimental Studies on Treated Sub-base Soil with Fly Ash and Cement for Sustainable Design Recommendations

The pavement constructions on soft and expansive soils are not durable and unable to sustain heavy traffic loading. As a result, pavement failures and settlement problems will occur very often even under light traffic loading due to cyclic and rolling effects. Geotechnical engineers have dwelled deeply into this matter, and adopt various methods to improve the engineering characteristics of soft fine-grained soils and expansive soils. The problematic soils are either replaced by good and better quality material or treated by using chemical stabilization with various binding materials. Increased the strength and durability are also the part of the sustainability drive to reduce the environment footprint of the built environment by the efficient use of resources and waste recycle materials. This paper presents a series of laboratory tests and evaluates the effect of cement and fly ash on the strength and drainage characteristics of soil in Miri. The tests were performed at different percentages of cement and fly ash by dry weight of soil. Additional tests were also performed on soils treated with the combinations of fly ash with cement and lime. The results of this study indicate an increase in unconfined compression strength and a decrease in hydraulic conductivity of the treated soil.