A Comprehensive Approach in Calculating the Impact of the Ground on Radiated Electromagnetic Fields Due to Lightning

The influence of finite ground conductivity is of great importance in calculating the induced voltages from the radiated electromagnetic fields due to lightning. In this paper, we try to give a comprehensive approach to calculate the impact of the ground on the radiated electromagnetic fields to lightning. The vertical component of lightning electric field is calculated with a reasonable approximation assuming a perfectly conducting ground in case the observation point does not exceed a few kilometers from the lightning channel. However, for distant observation points the radiated vertical component of lightning electric field is attenuated due finitely conducting ground. The attenuation is calculated using the expression elaborated for both low and high frequencies. The horizontal component of the electric field, however, is more affected by a finite conductivity of a ground. Besides, the contribution of the horizontal component of the electric field, to induced voltages on an overhead transmission line, is greater than that of the vertical component. Therefore, the calculation of the horizontal electric field is great concern for the simulation of lightning-induced voltages. For field to transmission lines coupling the ground impedance is calculated for early time behavior and for low frequency range.

Neural Network Monitoring Strategy of Cutting Tool Wear of Horizontal High Speed Milling

The wear of cutting tool degrades the quality of the product in the manufacturing processes. The on line monitoring of the cutting tool wear level is very necessary to prevent the deterioration of the quality of machining. Unfortunately there is not a direct manner to measure the cutting tool wear on line. Consequently we must adopt an indirect method where wear will be estimated from the measurement of one or more physical parameters appearing during the machining process such as the cutting force, the vibrations, or the acoustic emission etc…. In this work, a neural network system is elaborated in order to estimate the flank wear from the cutting force measurement and the cutting conditions.

Cost Sensitive Analysis of Production Logistics Measures A Decision Making Support System for Evaluating Measures in the Production

Due to the volatile global economy, enterprises are increasingly focusing on logistics. By investing in suitable measures a company can increase their logistic performance and assert themselves over the competition. However, enterprises are also faced with the challenge of investing available capital for maximum profits. In order to be able to create an informed and quantifiably comprehensible basis for a decision, enterprises need a suitable model for logistically and monetarily evaluating measures in production. Previously, within the frame of Collaborate Research Centre 489 (SFB 489) at the Institute for Production Systems and Logistics, (IFA) a Logistic Information System was developed specifically for providing enterprises in the forging industry with support when making decisions. Based on this research, a new initiative referred to as ‘Transfer Project T7’, aims to develop a universal approach for logistically and monetarily evaluating production measures. This paper focuses on the structural measure echelon storage and their impact on the entire production system.

Towards a Framework for Evaluating Scientific Efficiency of World-Class Universities

Evaluating the efficiency of decision making units has been frequently elaborated on in numerous publications. In this paper, the theoretical framework for a novel method of Distance Based Analysis (DBA) is presented. In addition, the method is performed on a sample of the ARWU’s top 54 Universities of the United States; the findings of which clearly demonstrate that the best ranked Universities are far from also being the most efficient.

Operation Parameters of Vacuum Cleaned Filters

For vacuum cleaned dust filters there exist no calculation methods to determine design parameters (e.g. traverse velocity of the nozzle, filter area…). In this work a method to calculate the optimum traverse velocity of the nozzle of an industrial-size flat dust filter at a given mean pressure drop and filter face velocity was elaborated. Well-known equations for the design of a cleanable multi-chamber bag-house-filter were modified in order to take into account a continuously regeneration of a dust filter by a nozzle. Thereby, the specific filter medium resistance and the specific cake resistance values are needed which can be derived from filter tests under constant operation conditions. A lab-scale filter test rig was used to derive the specific filter media resistance value and the specific cake resistance value for vacuum cleaned filter operation. Three different filter media were tested and the determined parameters were compared to each other.

Kinematic Analysis and Software Development of a Seven Degree of Freedom Inspection Robot

Robots are booming as an essential substituent in the field of inspection. In hazardous environments like nuclear waste disposal, robots are really a necessitate one. In a view to meet such demands, this paper presents the seven degree of freedom articulated inspection robot. To design such a robot the kinematic analysis of seven Degree of freedom robot which can inspect the hazardous nuclear waste storage tanks is done. The effective utilization of universal joints for arms and screw jack mechanisms at the base gives the higher order of degree of freedom to the newly designed robot. The analytical method of deriving the manipulator forward as well as inverse kinematics is explained elaborately using the Denavit-Hartenberg Approach for the purpose of calculating the robot joints, links and end-effector parameters. The comparison of the geometric and the analytical approach is stated. The self-developed kinematic model gives the accurate positions of the end effector. The Graphical User Interface (GUI) is developed in Visual Basic language for the manipulation of kinematic results easily. This software gives the expected position of the end-effector accurately at short time compared to manual manipulations.

The Optimization of Copper Sulfate and Tincalconite Molar Ratios on the Hydrothermal Synthesis of Copper Borates

In this research, copper borates are synthesized by the reaction of copper sulfate pentahydrate (CuSO4.5H2O) and tincalconite (Na2O4B7.10H2O). The experimental parameters are selected as 80oC reaction temperature and 60 of reaction time. The effect of mole ratio of CuSO4.5H2O to Na2O4B7.5H2O is studied. For the identification analyses X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) techniques are used. At the end of the experiments, synthesized copper borate is matched with the powder diffraction file of “00-001-0472” [Cu(BO2)2] and characteristic vibrations between B and O atoms are seen. The proper crystals are obtained at the mole ratio of 3:1. This study showed that simplified synthesis process is suitable for the production of copper borate minerals.

Security Model of a Unified Communications and Integrated Collaborations System in the Health Sector Environment of Developing Countries: A Case of Uganda

Access to information holds the key to the empowerment of everybody despite where they are living. This research has been carried out in respect of the people living in developing countries, considering their plight and complex geographical, demographic, social-economic conditions surrounding the areas they live, which hinder access to information and of professionals providing services such as medical workers, which has led to high death rates and development stagnation. Research on Unified Communications and Integrated Collaborations (UCIC) system in the health sector of developing countries aims at creating a possible solution of bridging the digital canyon among the communities. The system is meant to deliver services in a seamless manner to assist health workers situated anywhere to be accessed easily and access information which will enhance service delivery. The proposed UCIC provides the most immersive telepresence experience for one-to-one or many-to-many meetings. Extending to locations anywhere in the world, the transformative platform delivers Ultra-low operating costs through the use of general purpose networks and using special lenses and track systems. The essence of this study is to create a security model for the deployment of the UCIC system in the health sector of developing countries. The model approach used for building the UCIC system security carefully considers the specific requirements for the health sector environment organization such as data centre, national, regional and district hospitals, and health centers IV, III, II and I and then builds the single best possible secure network to meet their needs. The security model demonstrates on how the components of the UCIC system will be protected physically and logically in the health sector environment. The UCIC system once adopted and implemented correctly will bring enhancement to the speed and quality of services offered by health workers. The capacities of UCIC will help health workers shorten decision cycles, accelerate service delivery and save lives by speeding access to information and by making it possible for all health workers and patients to collaborate ubiquitously.

Generalized Maximum Entropy Method for Cosmic Source Localization

The Maximum entropy principle in spectral analysis was used as an estimator of Direction of Arrival (DoA) of electromagnetic or acoustic sources impinging on an array of sensors, indeed the maximum entropy operator is very efficient when the signals of the radiating sources are ergodic and complex zero mean random processes which is the case for cosmic sources. In this paper, we present basic review of the maximum entropy method (MEM) which consists of rank one operator but not a projector, and we elaborate a new operator which is full rank and sum of all possible projectors. Two dimensional Simulation results based on Monte Carlo trials prove the resolution power of the new operator where the MEM presents some erroneous fluctuations.

Combined Hydrothermal Synthesis of Zinc and Magnesium Borates at 100oC Using ZnO, MgO and H3BO3

Magnesium borate(MB) istechnical ceramic for high heat-resisting, corrosion-resisting, super mechanical strength, superinsulation, light weight, high strength, and high coefficient of elasticity. Zinc borate (ZB) can be used as multi-functional synergistic additives with flame retardant additives in polymers. The most important properties are low solubility in water and high dehydration temperature. ZB dehydrates above 290°C and anhydrous ZB has thermal resistance about 400°C. In this study, the raw materials of ZnO, MgO and H3BO3 were used with mole ratio of 1:1:9. With the starting materials hydrothermal method was applied at a temperature of 100oC. The reaction time was determined as 30, 60, 90 and 120 minutes after some preliminary experiments. After the synthesis, the crystal structure and the morphology of the products were examined by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). As a result, the forms of Zinc Oxide Borate Hydrate [Zn3B6O12.3.5H2O], Admontite [MgO(B2O3)3.7(H2O)] and Mcallisterite [Mg2(B6O7(OH)6)2.9(H2O)] were synthesized.

Elicitation of Requirements for a Knowledge Management Concept in Decentralized Production Planning

The planning in manufacturing system is becoming complicated day by day due to the expanding networks and shortage of skilled people to manage change. Consequently, faster lead time and rising demands for eco-efficient evaluation of manufacturing products and processes need exploitation of new and intelligent knowledge management concepts for manufacturing planning. This paper highlights motivation for incorporation of new features in the manufacturing planning system. Furthermore, it elaborates requirements for the development of intelligent knowledge management concept to support planning related decisions. Afterwards, the derived concept is presented in this paper considering two case studies. The first case study is concerned with the automotive ramp-up planning. The second case study specifies requirements for knowledge management system to support decisions in eco-efficient evaluation of manufacturing products and processes

Entanglement-based Quantum Computing by Diagrams of States

We explore entanglement in composite quantum systems and how its peculiar properties are exploited in quantum information and communication protocols by means of Diagrams of States, a novel method to graphically represent and analyze how quantum information is elaborated during computations performed by quantum circuits. We present quantum diagrams of states for Bell states generation, measurements and projections, for dense coding and quantum teleportation, for probabilistic quantum machines designed to perform approximate quantum cloning and universal NOT and, finally, for quantum privacy amplification based on entanglement purification. Diagrams of states prove to be a useful approach to analyze quantum computations, by offering an intuitive graphic representation of the processing of quantum information. They also help in conceiving novel quantum computations, from describing the desired information processing to deriving the final implementation by quantum gate arrays.

Portable Continuous Aerosol Concentrator for the Determination of NO2 in the Air

The paper deals with the development of portable aerosol concentrator and its application for the determination of nitrites and nitrates. The device enables the continuous trapping of pollutants in the air. An extensive literature search has been elaborated which aims at the development of samplers and the possibilities of their application in the continuous determination of volatile organic compounds. The practical part of the paper is focused on the development of the portable aerosol concentrator. The device using the Aerosol Enrichment Unit has been experimentally verified and subsequently realized. It operates on the principle of equilibrium accumulation of pollutants from the gaseous phase using absorption liquid polydisperse aerosol. The device has been applied for monitoring nitrites and nitrates in the air. The chemiluminescence detector was used for detection; the achieved detection limit for nitrites was 28 ng/m3 and for nitrates 78 ng/m3.

Denial of Service (DOS) Attack and Its Possible Solutions in VANET

Vehicular Ad-hoc Network (VANET) is taking more attention in automotive industry due to the safety concern of human lives on roads. Security is one of the safety aspects in VANET. To be secure, network availability must be obtained at all times since availability of the network is critically needed when a node sends any life critical information to other nodes. However, it can be expected that security attacks are likely to increase in the coming future due to more and more wireless applications being developed and deployed onto the well-known expose nature of the wireless medium. In this respect, the network availability is exposed to many types of attacks. In this paper, Denial of Service (DOS) attack on network availability is presented and its severity level in VANET environment is elaborated. A model to secure the VANET from the DOS attacks has been developed and some possible solutions to overcome the attacks have been discussed.

Information/Knowledge Society and Europe

During the last decade some long lasting changes and developments are shaping the global society. The world is entering a new society which is already named as information or knowledge society. In the paper, information/knowledge society is elaborated first. Starting in the year 2000, European Union has initiated some special projects such as eEurope and eEurope+ and activities such as Bologna Process and Socrates/Erasmus Program . The paper will review these activites in relation with information or knowledge society . Before paper ends with a conclusion, some views relevant to the topic are also presented.

Layout Based Spam Filtering

Due to the constant increase in the volume of information available to applications in fields varying from medical diagnosis to web search engines, accurate support of similarity becomes an important task. This is also the case of spam filtering techniques where the similarities between the known and incoming messages are the fundaments of making the spam/not spam decision. We present a novel approach to filtering based solely on layout, whose goal is not only to correctly identify spam, but also warn about major emerging threats. We propose a mathematical formulation of the email message layout and based on it we elaborate an algorithm to separate different types of emails and find the new, numerically relevant spam types.

Microwave Dehydration Behavior of Admontite Mineral at 360W

Dehydration behavior gives a hint about thermal properties of materials. It is important for the usage areas and transportation of minerals. Magnesium borates can be used as additive materials in areas such as in the production of superconducting materials, in the composition of detergents, due to the content of boron in the friction-reducing additives in oils and insulating coating compositions due to their good mechanic and thermal properties. In this study, thermal dehydration behavior of admontite (MgO(B2O3)3.7(H2O)), which is a kind of magnesium borate mineral, is experimented by microwave energy at 360W. Structure of admontite is suitable for the investigation of dehydration behavior by microwave because of its seven moles of crystal water. It is seen that admontite lost its 28.7% of weight at the end of the 120 minutes heating in microwave furnace. 

The Effect of Waste Magnesium to Boric Acid Ratio in Hydrothermal Magnesium Borate Synthesis at 70oC

Magnesium wastes are produced by many industrial activities. This waste problem is becoming a future problem for the world. Magnesium borates have many advantages such as; high corrosion resistance, heat resistance, high coefficient of elasticity and can also be used in the production of material against radiation. Addition, magnesium borates have great potential in sectors including ceramic and detergents industry and superconducting materials. In this study, using the starting materials of waste magnesium and H3BO3 the hydrothermal method was applied at a moderate temperature of 70oC. Several mole ratios of waste magnesium to H3BO3 are selected as; 1:2, 1:4, 1:6, 1:8, 1:10. Reaction time was determined as 1 hour. After the synthesis, X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) techniques are applied to products. As a result the forms of mcallisterite “Mg2(B6O7(OH)6)2.9(H2O)”, admontite “MgO(B2O3)3.7(H2O)” and magnesium boron hydrate (MgO(B2O3)3.6(H2O)” are obtained. 

E- Campus as an Environmental and Pedagogical Tool for Online Support

The Internet and the ever growing applications enable communities to share and collaborate through common platforms. However, this growing pattern is not witnessed yet even for elearning. This paper is based on a doctoral research which aimed at researching the ways students interact in an online campus and the supports that they look for and require. Content analysis, based on the Panchoo/Jaillet methodology, was done on four synchronous meetings between a tutor and his ten students. The UNIV-Rct ecampus, analogical to a physical campus, was found to be user friendly and the students enrolled in a master-s course faced no difficulties in using it. In addition to the environmental aspects, the pedagogical implementation of the course has driven the students to interact and collaborate significantly and this has contributed to overcome the problems faced by the distance learners. This completely online model was found to be fruitful in helping distant learners fight their loneliness and brave their difficulties in a socioconstructivism approach.

Calculus-based Runtime Verification

In this paper, a uniform calculus-based approach for synthesizing monitors checking correctness properties specified by a large variety of logics at runtime is provided, including future and past time logics, interval logics, state machine and parameterized temporal logics. We present a calculus mechanism to synthesize monitors from the logical specification for the incremental analysis of execution traces during test and real run. The monitor detects both good and bad prefix of a particular kind, namely those that are informative for the property under investigation. We elaborate the procedure of calculus as monitors.