A Further Improvement on the Resurrected Core-Spreading Vortex Method

In a previously developed fast vortex method, the diffusion of the vortex sheet induced at the solid wall by the no-slip boundary conditions was modeled according to the approximation solution of Koumoutsakos and converted into discrete blobs in the vicinity of the wall. This scheme had been successfully applied to a simulation of the flow induced with an impulsively initiated circular cylinder. In this work, further modifications on this vortex method are attempted, including replacing the approximation solution by the boundary-element-method solution, incorporating a new algorithm for handling the over-weak vortex blobs, and diffusing the vortex sheet circulation in a new way suitable for high-curvature solid bodies. The accuracy is thus largely improved. The predictions of lift and drag coefficients for a uniform flow past a NASA airfoil agree well with the existing literature.

Optimum Conditions for Effective Decomposition of Toluene as VOC Gas by Pilot-Scale Regenerative Thermal Oxidizer

Regenerative Thermal Oxidizer (RTO) is one of the best solutions for removal of Volatile Organic Compounds (VOC) from industrial processes. In the RTO, VOC in a raw gas are usually decomposed at 950-1300 K and the combustion heat of VOC is recovered by regenerative heat exchangers charged with ceramic honeycombs. The optimization of the treatment of VOC leads to the reduction of fuel addition to VOC decomposition, the minimization of CO2 emission and operating cost as well. In the present work, the thermal efficiency of the RTO was investigated experimentally in a pilot-scale RTO unit using toluene as a typical representative of VOC. As a result, it was recognized that the radiative heat transfer was dominant in the preheating process of a raw gas when the gas flow rate was relatively low. Further, it was found that a minimum heat exchanger volume to achieve self combustion of toluene without additional heating of the RTO by fuel combustion was dependent on both the flow rate of a raw gas and the concentration of toluene. The thermal efficiency calculated from fuel consumption and the decomposed toluene ratio, was found to have a maximum value of 0.95 at a raw gas mass flow rate of 1810 kg·h-1 and honeycombs height of 1.5m.

Laboratory Experimentation for Supporting Collaborative Working in Engineering Education over the Internet

Collaborative working environments for distance education can be considered as a more generic form of contemporary remote labs. At present, the majority of existing real laboratories are not constructed to allow the involved participants to collaborate in real time. To make this revolutionary learning environment possible we must allow the different users to carry out an experiment simultaneously. In recent times, multi-user environments are successfully applied in many applications such as air traffic control systems, team-oriented military systems, chat-text tools, multi-player games etc. Thus, understanding the ideas and techniques behind these systems could be of great importance in the contribution of ideas to our e-learning environment for collaborative working. In this investigation, collaborative working environments from theoretical and practical perspectives are considered in order to build an effective collaborative real laboratory, which allows two students or more to conduct remote experiments at the same time as a team. In order to achieve this goal, we have implemented distributed system architecture, enabling students to obtain an automated help by either a human tutor or a rule-based e-tutor.

Hand Gesture Recognition using Blob Detection for Immersive Projection Display System

We developed a vision interface immersive projection system, CAVE in virtual rea using hand gesture recognition with computer vis background image was subtracted from current webcam and we convert the color space of the imag Then we mask skin regions using skin color range t a noise reduction operation. We made blobs fro gestures were recognized using these blobs. Using recognition, we could implement an effective bothering devices for CAVE. e framework for an reality research field vision techniques. ent image frame age into HSV space. e threshold and apply from the image and ing our hand gesture e interface without

Biodegradation of Carbazole By a Promising Gram-Negative Bacterium

In the present work we report a gram negative bacterial isolate, from soil of a dye industry, with promising biorefining and bioremediation potential. This isolate (GBS.5) could utilize carbazole (nitrogen containing polycyclic aromatic hydrocarbon) as the sole source of nitrogen and carbon and utilize almost 98% of 3mM carbazole in 100 hours. The specific activity of our GBS.5 isolate for carbazole degradation at 30°C and pH 7.0 was found to be 11.36 μmol/min/g dry cell weight as compared to 10.4 μmol/min/g dry cell weight, the highest reported specific activity till date. The presence of car genes (the genes involved in denitrogenation of carbazole) was confirmed through PCR amplification.

Evaluating per-user Fairness of Goal-Oriented Parallel Computer Job Scheduling Policies

Fair share objective has been included into the goaloriented parallel computer job scheduling policy recently. However, the previous work only presented the overall scheduling performance. Thus, the per-user performance of the policy is still lacking. In this work, the details of per-user fair share performance under the Tradeoff-fs(Tx:avgX) policy will be further evaluated. A basic fair share priority backfill policy namely RelShare(1d) is also studied. The performance of all policies is collected using an event-driven simulator with three real job traces as input. The experimental results show that the high demand users are usually benefited under most policies because their jobs are large or they have a lot of jobs. In the large job case, one job executed may result in over-share during that period. In the other case, the jobs may be backfilled for performances. However, the users with a mixture of jobs may suffer because if the smaller jobs are executing the priority of the remaining jobs from the same user will be lower. Further analysis does not show any significant impact of users with a lot of jobs or users with a large runtime approximation error.

Characterization of Microroughness Parameters in Cu and Cu2O Nanoparticles Embedded in Carbon Film

The morphological parameter of a thin film surface can be characterized by power spectral density (PSD) functions which provides a better description to the topography than the RMS roughness and imparts several useful information of the surface including fractal and superstructure contributions. Through the present study Nanoparticle copper/carbon composite films were prepared by co-deposition of RF-Sputtering and RF-PECVD method from acetylene gas and copper target. Surface morphology of thin films is characterized by using atomic force microscopy (AFM). The Carbon content of our films was obtained by Rutherford Back Scattering (RBS) and it varied from .4% to 78%. The power values of power spectral density (PSD) for the AFM data were determined by the fast Fourier transform (FFT) algorithms. We investigate the effect of carbon on the roughness of thin films surface. Using such information, roughness contributions of the surface have been successfully extracted.