The Application of Adaptive Tabu Search Algorithm and Averaging Model to the Optimal Controller Design of Buck Converters

The paper presents the applications of artificial intelligence technique called adaptive tabu search to design the controller of a buck converter. The averaging model derived from the DQ and generalized state-space averaging methods is applied to simulate the system during a searching process. The simulations using such averaging model require the faster computational time compared with that of the full topology model from the software packages. The reported model is suitable for the work in the paper in which the repeating calculation is needed for searching the best solution. The results will show that the proposed design technique can provide the better output waveforms compared with those designed from the classical method.

Scaling up Detection Rates and Reducing False Positives in Intrusion Detection using NBTree

In this paper, we present a new learning algorithm for anomaly based network intrusion detection using improved self adaptive naïve Bayesian tree (NBTree), which induces a hybrid of decision tree and naïve Bayesian classifier. The proposed approach scales up the balance detections for different attack types and keeps the false positives at acceptable level in intrusion detection. In complex and dynamic large intrusion detection dataset, the detection accuracy of naïve Bayesian classifier does not scale up as well as decision tree. It has been successfully tested in other problem domains that naïve Bayesian tree improves the classification rates in large dataset. In naïve Bayesian tree nodes contain and split as regular decision-trees, but the leaves contain naïve Bayesian classifiers. The experimental results on KDD99 benchmark network intrusion detection dataset demonstrate that this new approach scales up the detection rates for different attack types and reduces false positives in network intrusion detection.

Knowledge Management and e-Learning –An Agent-Based Approach

In this paper an open agent-based modular framework for personalized and adaptive curriculum generation in e-learning environment is proposed. Agent-based approaches offer several potential advantages over alternative approaches. Agent-based systems exhibit high levels of flexibility and robustness in dynamic or unpredictable environments by virtue of their intrinsic autonomy. The presented framework enables integration of different types of expert agents, various kinds of learning objects and user modeling techniques. It creates possibilities for adaptive e-learning process. The KM e-learning system is in a process of implementation in Varna Free University and will be used for supporting the educational process at the University.

Average Switching Thresholds and Average Throughput for Adaptive Modulation using Markov Model

The motivation for adaptive modulation and coding is to adjust the method of transmission to ensure that the maximum efficiency is achieved over the link at all times. The receiver estimates the channel quality and reports it back to the transmitter. The transmitter then maps the reported quality into a link mode. This mapping however, is not a one-to-one mapping. In this paper we investigate a method for selecting the proper modulation scheme. This method can dynamically adapt the mapping of the Signal-to- Noise Ratio (SNR) into a link mode. It enables the use of the right modulation scheme irrespective of changes in the channel conditions by incorporating errors in the received data. We propose a Markov model for this method, and use it to derive the average switching thresholds and the average throughput. We show that the average throughput of this method outperforms the conventional threshold method.

A Hybrid CamShift and l1-Minimization Video Tracking Algorithm

The Continuously Adaptive Mean-Shift (CamShift) algorithm, incorporating scene depth information is combined with the l1-minimization sparse representation based method to form a hybrid kernel and state space-based tracking algorithm. We take advantage of the increased efficiency of the former with the robustness to occlusion property of the latter. A simple interchange scheme transfers control between algorithms based upon drift and occlusion likelihood. It is quantified by the projection of target candidates onto a depth map of the 2D scene obtained with a low cost stereo vision webcam. Results are improved tracking in terms of drift over each algorithm individually, in a challenging practical outdoor multiple occlusion test case.

Design of QFT-Based Self-Tuning Deadbeat Controller

This paper presents a design method of self-tuning Quantitative Feedback Theory (QFT) by using improved deadbeat control algorithm. QFT is a technique to achieve robust control with pre-defined specifications whereas deadbeat is an algorithm that could bring the output to steady state with minimum step size. Nevertheless, usually there are large peaks in the deadbeat response. By integrating QFT specifications into deadbeat algorithm, the large peaks could be tolerated. On the other hand, emerging QFT with adaptive element will produce a robust controller with wider coverage of uncertainty. By combining QFT-based deadbeat algorithm and adaptive element, superior controller that is called selftuning QFT-based deadbeat controller could be achieved. The output response that is fast, robust and adaptive is expected. Using a grain dryer plant model as a pilot case-study, the performance of the proposed method has been evaluated and analyzed. Grain drying process is very complex with highly nonlinear behaviour, long delay, affected by environmental changes and affected by disturbances. Performance comparisons have been performed between the proposed self-tuning QFT-based deadbeat, standard QFT and standard dead-beat controllers. The efficiency of the self-tuning QFTbased dead-beat controller has been proven from the tests results in terms of controller’s parameters are updated online, less percentage of overshoot and settling time especially when there are variations in the plant.

Modulation Identification Algorithm for Adaptive Demodulator in Software Defined Radios Using Wavelet Transform

A generalized Digital Modulation Identification algorithm for adaptive demodulator has been developed and presented in this paper. The algorithm developed is verified using wavelet Transform and histogram computation to identify QPSK and QAM with GMSK and M–ary FSK modulations. It has been found that the histogram peaks simplifies the procedure for identification. The simulated results show that the correct modulation identification is possible to a lower bound of 5 dB and 12 dB for GMSK and QPSK respectively. When SNR is above 5 dB the throughput of the proposed algorithm is more than 97.8%. The receiver operating characteristics (ROC) has been computed to measure the performance of the proposed algorithm and the analysis shows that the probability of detection (Pd) drops rapidly when SNR is 5 dB and probability of false alarm (Pf) is smaller than 0.3. The performance of the proposed algorithm has been compared with existing methods and found it will identify all digital modulation schemes with low SNR.

An Approach to Adaptive Load Balancing for RFID Middlewares

Recently, there have been an increasing interest in RFID system and RFID systems have been applied to various applications. Load balancing is a fundamental technique for providing scalability of systems by moving workload from overloaded nodes to under-loaded nodes. This paper presents an approach to adaptive load balancing for RFID middlewares. Workloads of RFID middlewares can have a considerable variation according to the location of the connected RFID readers and can abruptly change at a particular instance. The proposed approach considers those characteristics of RFID middle- wares to provide an efficient load balancing.

Adaptive Weighted Averaging Filter Using the Appropriate Number of Consecutive Frames

In this paper, we propose a novel adaptive spatiotemporal filter that utilizes image sequences in order to remove noise. The consecutive frames include: current, previous and next noisy frames. The filter proposed in this paper is based upon the weighted averaging pixels intensity and noise variance in image sequences. It utilizes the Appropriate Number of Consecutive Frames (ANCF) based on the noisy pixels intensity among the frames. The number of consecutive frames is adaptively calculated for each region in image and its value may change from one region to another region depending on the pixels intensity within the region. The weights are determined by a well-defined mathematical criterion, which is adaptive to the feature of spatiotemporal pixels of the consecutive frames. It is experimentally shown that the proposed filter can preserve image structures and edges under motion while suppressing noise, and thus can be effectively used in image sequences filtering. In addition, the AWA filter using ANCF is particularly well suited for filtering sequences that contain segments with abruptly changing scene content due to, for example, rapid zooming and changes in the view of the camera.

A WIP Control Based On an Intelligent Controller

In this study, a robust intelligent backstepping tracking control (RIBTC) system combined with adaptive output recurrent cerebellar model articulation control (AORCMAC) and H∞ control technique is proposed for wheeled inverted pendulums (WIPs) real-time control with exact system dynamics unknown. Moreover, a robust H∞ controller is designed to attenuate the effect of the residual approximation errors and external disturbances with desired attenuation level. The experimental results indicate that the WIPs can stand upright stably when using the proposed RIBTC.

Noise Reduction in Image Sequences using an Effective Fuzzy Algorithm

In this paper, we propose a novel spatiotemporal fuzzy based algorithm for noise filtering of image sequences. Our proposed algorithm uses adaptive weights based on a triangular membership functions. In this algorithm median filter is used to suppress noise. Experimental results show when the images are corrupted by highdensity Salt and Pepper noise, our fuzzy based algorithm for noise filtering of image sequences, are much more effective in suppressing noise and preserving edges than the previously reported algorithms such as [1-7]. Indeed, assigned weights to noisy pixels are very adaptive so that they well make use of correlation of pixels. On the other hand, the motion estimation methods are erroneous and in highdensity noise they may degrade the filter performance. Therefore, our proposed fuzzy algorithm doesn-t need any estimation of motion trajectory. The proposed algorithm admissibly removes noise without having any knowledge of Salt and Pepper noise density.

An Adaptive Dynamic Fracture for 3D Fatigue Crack Growth Using X-FEM

In recent years, a new numerical method has been developed, the extended finite element method (X-FEM). The objective of this work is to exploit the (X-FEM) for the treatment of the fracture mechanics problems on 3D geometries, where we showed the ability of this method to simulate the fatigue crack growth into two cases: edge and central crack. In the results we compared the six first natural frequencies of mode shapes uncracking with the cracking initiation in the structure, and showed the stress intensity factor (SIF) evolution function as crack size propagation into structure, the analytical validation of (SIF) is presented. For to evidence the aspects of this method, all result is compared between FEA and X-FEM.

The Optimized Cascade PI Controllers of the Generator Control Unit in the Aircraft Power System

This paper presents the optimal controller design of the generator control unit in the aircraft power system. The adaptive tabu search technique is applied to tune the controller parameters until the best terminal output voltage of generator is achieved. The output response from the system with the controllers designed by the proposed technique is compared with those from the conventional method. The transient simulations using the commercial software package show that the controllers designed from the adaptive tabu search algorithm can provide the better output performance compared with the result from the classical method. The proposed design technique is very flexible and useful for electrical aircraft engineers.

2D Validation of a High-order Adaptive Cartesian-grid finite-volume Characteristic- flux Model with Embedded Boundaries

A Finite Volume method based on Characteristic Fluxes for compressible fluids is developed. An explicit cell-centered resolution is adopted, where second and third order accuracy is provided by using two different MUSCL schemes with Minmod, Sweby or Superbee limiters for the hyperbolic part. Few different times integrator is used and be describe in this paper. Resolution is performed on a generic unstructured Cartesian grid, where solid boundaries are handled by a Cut-Cell method. Interfaces are explicitely advected in a non-diffusive way, ensuring local mass conservation. An improved cell cutting has been developed to handle boundaries of arbitrary geometrical complexity. Instead of using a polygon clipping algorithm, we use the Voxel traversal algorithm coupled with a local floodfill scanline to intersect 2D or 3D boundary surface meshes with the fixed Cartesian grid. Small cells stability problem near the boundaries is solved using a fully conservative merging method. Inflow and outflow conditions are also implemented in the model. The solver is validated on 2D academic test cases, such as the flow past a cylinder. The latter test cases are performed both in the frame of the body and in a fixed frame where the body is moving across the mesh. Adaptive Cartesian grid is provided by Paramesh without complex geometries for the moment.

Automatic Detection of Mass Type Breast Cancer using Texture Analysis in Korean Digital Mammography

In this study, we present an advanced detection technique for mass type breast cancer based on texture information of organs. The proposed method detects the cancer areas in three stages. In the first stage, the midpoints of mass area are determined based on AHE (Adaptive Histogram Equalization). In the second stage, we set the threshold coefficient of homogeneity by using MLE (Maximum Likelihood Estimation) to compute the uniformity of texture. Finally, mass type cancer tissues are extracted from the original image. As a result, it was observed that the proposed method shows an improved detection performance on dense breast tissues of Korean women compared with the existing methods. It is expected that the proposed method may provide additional diagnostic information for detection of mass-type breast cancer.

Adaptive Square-Rooting Companding Technique for PAPR Reduction in OFDM Systems

This paper addresses the problem of peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) systems. It also introduces a new PAPR reduction technique based on adaptive square-rooting (SQRT) companding process. The SQRT process of the proposed technique changes the statistical characteristics of the OFDM output signals from Rayleigh distribution to Gaussian-like distribution. This change in statistical distribution results changes of both the peak and average power values of OFDM signals, and consequently reduces significantly the PAPR. For the 64QAM OFDM system using 512 subcarriers, up to 6 dB reduction in PAPR was achieved by square-rooting technique with fixed degradation in bit error rate (BER) equal to 3 dB. However, the PAPR is reduced at the expense of only -15 dB out-ofband spectral shoulder re-growth below the in-band signal level. The proposed adaptive SQRT technique is superior in terms of BER performance than the original, non-adaptive, square-rooting technique when the required reduction in PAPR is no more than 5 dB. Also, it provides fixed amount of PAPR reduction in which it is not available in the original SQRT technique.

Some Immunological Characteristics of Tick- Borne Encephalitis in Perm Region

It is shown that the relationship of tick-borne encephalitis virus with the human body comes in two ways, the development of acute infection with the outcome in convalescence and long stay by the virus in the body, its persistence in the nervous tissue with periodic reactivation and prolonged circulating immunoglobulin M. In spite of the fact that tick-borne encephalitis virus has a tropism for nerve tissue, involvement in the process of blood cells is an integral component of the infection. Comprehensive study of the relation of factors of innate and adaptive immunity in the tick-borne encephalitis providing insight into the features of chronic disease.

Influence of Adaptation Gain and Reference Model Parameters on System Performance for Model Reference Adaptive Control

This article presents a detailed analysis and comparative performance evaluation of model reference adaptive control systems. In contrast to classical control theory, adaptive control methods allow to deal with time-variant processes. Inspired by the works [1] and [2], two methods based on the MIT rule and Lyapunov rule are applied to a linear first order system. The system is simulated and it is investigated how changes to the adaptation gain affect the system performance. Furthermore, variations in the reference model parameters, that is changing the desired closed-loop behaviour are examinded.

Second-order Time Evolution Scheme for Time-dependent Neutron Transport Equation

In this paper, the typical exponential method, diamond difference and modified time discrete scheme is researched for self adaptive time step. The second-order time evolution scheme is applied to time-dependent spherical neutron transport equation by discrete ordinates method. The numerical results show that second-order time evolution scheme associated exponential method has some good properties. The time differential curve about neutron current is more smooth than that of exponential method and diamond difference and modified time discrete scheme.

Evaluation of the Displacement-Based and the Force-Based Adaptive Pushover Methods in Seismic Response Estimation of Irregular Buildings Considering Torsional Effects

Recent years, adaptive pushover methods have been developed for seismic analysis of structures. Herein, the accuracy of the displacement-based adaptive pushover (DAP) method, which is introduced by Antoniou and Pinho [2004], is evaluated for Irregular buildings. The results are compared to the force-based procedure. Both concrete and steel frame structures, asymmetric in plan and elevation are analyzed and also torsional effects are taking into the account. These analyses are performed using both near fault and far fault records. In order to verify the results, the Incremental Dynamic Analysis (IDA) is performed.