Recursive Least Squares Adaptive Filter a better ISI Compensator

Inter-symbol interference if not taken care off may cause severe error at the receiver and the detection of signal becomes difficult. An adaptive equalizer employing Recursive Least Squares algorithm can be a good compensation for the ISI problem. In this paper performance of communication link in presence of Least Mean Square and Recursive Least Squares equalizer algorithm is analyzed. A Model of communication system having Quadrature amplitude modulation and Rician fading channel is implemented using MATLAB communication block set. Bit error rate and number of errors is evaluated for RLS and LMS equalizer algorithm, due to change in Signal to Noise Ratio (SNR) and fading component gain in Rician fading Channel.

Antidiabetic and Antioxidative Activities of Butyrolactone I from Aspergillus terreus MC751

The bioassay-guided isolation and purification of an ethyl acetate extract of Aspergillus terreus MC751 led to the characterization of butyrolactone I as an antidiabetic and antioxidant. The antidiabetic activity of butyrolactone I was evaluated by α- glucosidase and α-amylase inhibition assays. Butyrolactone I demonstrated significant concentration-dependent, mixed-type inhibitory activity against yeast α-glucosidase with an IC50 of 54μM. However, the compound exhibited less activity against rat intestinal α-glucosidase and α-amylase. This is the first report on α-glucosidase inhibitory activity of butyrolactone I. The antioxidative activity of butyrolactone I was evaluated based on scavenging effects on 1,1- diphenyl-2-picrylhydrazyl (DPPH) (IC50 =51 μM) and hydrogen peroxide (IC50= 141 μM) radicals as well as a reducing power assay. The results suggest that butyrolactone I is a promising antidiabetic as well as antioxidant and should be considered for clinical trials.

Modeling and Analysis of Adaptive Buffer Sharing Scheme for Consecutive Packet Loss Reduction in Broadband Networks

High speed networks provide realtime variable bit rate service with diversified traffic flow characteristics and quality requirements. The variable bit rate traffic has stringent delay and packet loss requirements. The burstiness of the correlated traffic makes dynamic buffer management highly desirable to satisfy the Quality of Service (QoS) requirements. This paper presents an algorithm for optimization of adaptive buffer allocation scheme for traffic based on loss of consecutive packets in data-stream and buffer occupancy level. Buffer is designed to allow the input traffic to be partitioned into different priority classes and based on the input traffic behavior it controls the threshold dynamically. This algorithm allows input packets to enter into buffer if its occupancy level is less than the threshold value for priority of that packet. The threshold is dynamically varied in runtime based on packet loss behavior. The simulation is run for two priority classes of the input traffic – realtime and non-realtime classes. The simulation results show that Adaptive Partial Buffer Sharing (ADPBS) has better performance than Static Partial Buffer Sharing (SPBS) and First In First Out (FIFO) queue under the same traffic conditions.

Model Predictive Control of Gantry Crane with Input Nonlinearity Compensation

This paper proposed a nonlinear model predictive control (MPC) method for the control of gantry crane. One of the main motivations to apply MPC to control gantry crane is based on its ability to handle control constraints for multivariable systems. A pre-compensator is constructed to compensate the input nonlinearity (nonsymmetric dead zone with saturation) by using its inverse function. By well tuning the weighting function matrices, the control system can properly compromise the control between crane position and swing angle. The proposed control algorithm was implemented for the control of gantry crane system in System Control Lab of University of Technology, Sydney (UTS), and achieved desired experimental results.

Influence of Active Packaging on the Quality of Pumpkin - Rowanberry Marmalade Candies

Experiments with pumpkin-rowanberry marmalade candies were carried out at the Faculty of Food Technology of the Latvia University of Agriculture. The objective of this investigation was to evaluate the quality changes of pumpkin-rowanberry marmalade candies packed in different packaging materials during the storage of 15 weeks, and to find the most suitable packaging material for prolongation of low sugar marmalade candies shelf-life. An active packaging in combination with modified atmosphere (MAP, CO2 100%) was examined and compared with traditional packaging in air ambiance. Polymer Multibarrier 60 and paper bags were used. Influence of iron based oxygen absorber in sachets of 500 cc obtained from Mitsubishi Gas Chemical Europe Ageless® on the marmalade candies’ quality was tested during shelf life. Samples of 80±5 g were packaged in polymer pouches (110 mm x 110 mm), hermetically sealed by MULTIVAC C300 vacuum chamber machine, and stored in a room temperature +21±0.5 °C. The physiochemical properties –moisture content, hardness, aw, pH, changes of atmosphere content (CO2 and O2), ascorbic acid, total carotenoids, total phenols in headspace of packs, and microbial conditions were analysed before packaging and in the 1st, 3rd , 5th, 8th, 11th and 15th weeks of storage.

REDD: Reliable Energy-Efficient Data Dissemination in Wireless Sensor Networks with Multiple Mobile Sinks

In wireless sensor network (WSN) the use of mobile sink has been attracting more attention in recent times. Mobile sinks are more effective means of balancing load, reducing hotspot problem and elongating network lifetime. The sensor nodes in WSN have limited power supply, computational capability and storage and therefore for continuous data delivery reliability becomes high priority in these networks. In this paper, we propose a Reliable Energy-efficient Data Dissemination (REDD) scheme for WSNs with multiple mobile sinks. In this strategy, sink first determines the location of source and then directly communicates with the source using geographical forwarding. Every forwarding node (FN) creates a local zone comprising some sensor nodes that can act as representative of FN when it fails. Analytical and simulation study reveals significant improvement in energy conservation and reliable data delivery in comparison to existing schemes.

Order Reduction using Modified Pole Clustering and Pade Approximations

The authors present a mixed method for reducing the order of the large-scale dynamic systems. In this method, the denominator polynomial of the reduced order model is obtained by using the modified pole clustering technique while the coefficients of the numerator are obtained by Pade approximations. This method is conceptually simple and always generates stable reduced models if the original high-order system is stable. The proposed method is illustrated with the help of the numerical examples taken from the literature.

Isobaric Vapor-Liquid Equilibria of Mesitylene + 1- Heptanol and Mesitylene +1-Octanol at 97.3 kPa

Isobaric vapor-liquid equilibrium measurements are reported for the binary mixtures of Mesitylene + 1-Heptanol and Mesitylene + 1-Octanol at 97.3 kPa. The measurements have been performed using a vapor recirculating type (modified Othmer's) equilibrium still. Both the mixtures show positive deviation from ideality. The Mesitylene + 1-Heptanol mixture forms an azeotrope whereas Mesitylene + 1- Octanol form a non – azeotropic mixture. The activity coefficients have been calculated taking into consideration the vapor phase nonideality. The data satisfy the thermodynamic consistency tests of Herington, and Hirata. The activity coefficients have been satisfactorily correlated by means of the Margules, Redlich-Kister, Wilson, Black, and NRTL equations. The activity coefficient values have also been obtained by UNIFAC method.

Some Static Isotropic Perfect Fluid Spheres in General Relativity

In the present article, a new class of solutions of Einstein field equations is investigated for a spherically symmetric space-time when the source of gravitation is a perfect fluid. All the solutions have been derived by making some suitable arrangements in the field equations. The solutions so obtained have been seen to describe Schwarzschild interior solutions. Most of the solutions are subjected to the reality conditions. As far as the authors are aware the solutions are new.

MIMO-OFDM Channel Tracking Using a Dynamic ANN Topology

All the available algorithms for blind estimation namely constant modulus algorithm (CMA), Decision-Directed Algorithm (DDA/DFE) suffer from the problem of convergence to local minima. Also, if the channel drifts considerably, any DDA looses track of the channel. So, their usage is limited in varying channel conditions. The primary limitation in such cases is the requirement of certain overhead bits in the transmit framework which leads to wasteful use of the bandwidth. Also such arrangements fail to use channel state information (CSI) which is an important aid in improving the quality of reception. In this work, the main objective is to reduce the overhead imposed by the pilot symbols, which in effect reduces the system throughput. Also we formulate an arrangement based on certain dynamic Artificial Neural Network (ANN) topologies which not only contributes towards the lowering of the overhead but also facilitates the use of the CSI. A 2×2 Multiple Input Multiple Output (MIMO) system is simulated and the performance variation with different channel estimation schemes are evaluated. A new semi blind approach based on dynamic ANN is proposed for channel tracking in varying channel conditions and the performance is compared with perfectly known CSI and least square (LS) based estimation.

Aqueous Ranitidine Elimination in Photolytic Processes

The elimination of ranitidine (a pharmaceutical compound) has been carried out in the presence of UV-C radiation. After some preliminary experiments, it has been experienced the no influence of the gas nature (air or oxygen) bubbled in photolytic experiments. From simple photolysis experiments the quantum yield of this compound has been determined. Two photolytic approximation has been used, the linear source emission in parallel planes and the point source emission in spherical planes. The quantum yield obtained was in the proximity of 0.05 mol Einstein-1 regardless of the method used. Addition of free radical promoters (hydrogen peroxide) increases the ranitidine removal rate while the use of photocatalysts (TiO2) negatively affects the process.

Performance Comparison of Particle Swarm Optimization with Traditional Clustering Algorithms used in Self-Organizing Map

Self-organizing map (SOM) is a well known data reduction technique used in data mining. It can reveal structure in data sets through data visualization that is otherwise hard to detect from raw data alone. However, interpretation through visual inspection is prone to errors and can be very tedious. There are several techniques for the automatic detection of clusters of code vectors found by SOM, but they generally do not take into account the distribution of code vectors; this may lead to unsatisfactory clustering and poor definition of cluster boundaries, particularly where the density of data points is low. In this paper, we propose the use of an adaptive heuristic particle swarm optimization (PSO) algorithm for finding cluster boundaries directly from the code vectors obtained from SOM. The application of our method to several standard data sets demonstrates its feasibility. PSO algorithm utilizes a so-called U-matrix of SOM to determine cluster boundaries; the results of this novel automatic method compare very favorably to boundary detection through traditional algorithms namely k-means and hierarchical based approach which are normally used to interpret the output of SOM.

Reliability Analysis of Press Unit using Vague Set

In conventional reliability assessment, the reliability data of system components are treated as crisp values. The collected data have some uncertainties due to errors by human beings/machines or any other sources. These uncertainty factors will limit the understanding of system component failure due to the reason of incomplete data. In these situations, we need to generalize classical methods to fuzzy environment for studying and analyzing the systems of interest. Fuzzy set theory has been proposed to handle such vagueness by generalizing the notion of membership in a set. Essentially, in a Fuzzy Set (FS) each element is associated with a point-value selected from the unit interval [0, 1], which is termed as the grade of membership in the set. A Vague Set (VS), as well as an Intuitionistic Fuzzy Set (IFS), is a further generalization of an FS. Instead of using point-based membership as in FS, interval-based membership is used in VS. The interval-based membership in VS is more expressive in capturing vagueness of data. In the present paper, vague set theory coupled with conventional Lambda-Tau method is presented for reliability analysis of repairable systems. The methodology uses Petri nets (PN) to model the system instead of fault tree because it allows efficient simultaneous generation of minimal cuts and path sets. The presented method is illustrated with the press unit of the paper mill.

Chronic Patients- Prescription Refill Intentions

Environment today is featured with aging population, increasing prevalence of chronic disease and complex of medical treatment. Safe use of pharmaceutics relied very much on the efforts made by both the health- related organizations and as well as the government agencies. As far as the specialization concern in providing health services to the patients, the government actively issued and implemented the divisions of medical treatment and pharmaceutical to improve the quality of care and to reduce medication errors and ensure public health. Pharmaceutical sub-sector policy has been implemented for 13 years. This study attempts to explore the factors that affect the patients- behavior intention of refilling a prescription from a NHIB pharmacy. Samples were those patients refilling their prescriptions with the case NHIB pharmacies. A self-administered questionnaire was used to collect respondents- information while the patients or family members visit the pharmacy for the refilling. 1,200 questionnaires were dispatched in 37 pharmacies that randomly selected from Pingtung City, Dongkang, Chaozhou, Hengchun areas. 732 responses were gained with 604 valid samples for further analyses. Results of data analyses indicated that respondents- attitude, subjective norm, perceived behavior control and behavior intentions toward refilling behavior varied from some demographic variables to another. This research also suggested adding actual behavior, either by a self-report or observed, into the research.

Influence of Active Packaging on the Shelf Life of Apple-Black Currant Marmalade Candies

The research object was apple-black currant marmalade candies. Experiments were carried out at the Faculty of Food Technology of the Latvia University of Agriculture. An active packaging in combination with modified atmosphere (MAP, CO2 100%) was examined and compared with traditional packaging in air ambiance. Polymer Multibarrier 60 and paper bags were used. Influence of iron based oxygen absorber in sachets of 500 cc obtained from Mitsubishi Gas Chemical Europe Ageless® was tested on the quality during the shelf of marmalade. Samples of 80±5 g were packaged in polymer pouches (110 mm x 110 mm), hermetically sealed by MULTIVAC C300 vacuum chamber machine, and stored in room temperature +20.0±1.0 °C. The physiochemical properties – weight losses, moisture content, hardness, aw, pH, colour, changes of atmosphere content (CO2 and O2) in headspace of packs, and microbial conditions were analysed before packaging and in the 1st, 3rd , 5th, 8th, 11th and 15th weeks of storage.

Influence of Atmospheric Physical Effects on Static Behavior of Building Plate Components Made of Fiber-Cement-Based Materials

The paper presents the brief information on particular results of experimental study focused to the problems of behavior of structural plated components made of fiber-cement-based materials and used in building constructions, exposed to atmospheric physical effects given by the weather changes in the summer period. Weather changes represented namely by temperature and rain cause also the changes of the temperature and moisture of the investigated structural components. This can affect their static behavior that means stresses and deformations, which have been monitored as the main outputs of tests performed. Experimental verification is based on the simulation of the influence of temperature and rain using the defined procedure of warming and water sprinkling with respect to the corresponding weather conditions during summer period in the South Moravian region at the Czech Republic, for which the application of these structural components is mainly planned. Two types of components have been tested: (i) glass-fiber-concrete panels used for building façades and (ii) fiber-cement slabs used mainly for claddings, but also as a part of floor structures or lost shuttering, and so on.

Traffic Load based Performance Analysis of DSR and STAR Routing Protocol

The wireless adhoc network is comprised of wireless node which can move freely and are connected among themselves without central infrastructure. Due to the limited transmission range of wireless interfaces, in most cases communication has to be relayed over intermediate nodes. Thus, in such multihop network each node (also called router) is independent, self-reliant and capable to route the messages over the dynamic network topology. Various protocols are reported in this field and it is very difficult to decide the best one. A key issue in deciding which type of routing protocol is best for adhoc networks is the communication overhead incurred by the protocol. In this paper STAR a table driven and DSR on demand protocols based on IEEE 802.11 are analyzed for their performance on different performance measuring metrics versus varying traffic CBR load using QualNet 5.0.2 network simulator.

Risk Assessment of Selected Source for Emergency Water Supply Case Study II

The case study deals with the semi-quantitative risk assessment of water resource earmarked for the emergency supply of population with drinking water. The risk analysis has been based on previously identified hazards/sensitivities of the elements of hydrogeological structure and technological equipment of ground water resource as well as on the assessment of the levels of hazard, sensitivity and criticality of individual resource elements in the form of point indexes. The following potential sources of hazard have been considered: natural disasters caused by atmospheric and geological changes, technological hazards, and environmental burdens. The risk analysis has proved that the assessed risks are acceptable and the water resource may be integrated into a crisis plan of a given region.

Estimation of Individual Power of Noise Sources Operating Simultaneously

Noise has adverse effect on human health and comfort. Noise not only cause hearing impairment, but it also acts as a causal factor for stress and raising systolic pressure. Additionally it can be a causal factor in work accidents, both by marking hazards and warning signals and by impeding concentration. Industry workers also suffer psychological and physical stress as well as hearing loss due to industrial noise. This paper proposes an approach to enable engineers to point out quantitatively the noisiest source for modification, while multiple machines are operating simultaneously. The model with the point source and spherical radiation in a free field was adopted to formulate the problem. The procedure works very well in ideal cases (point source and free field). However, most of the industrial noise problems are complicated by the fact that the noise is confined in a room. Reflections from the walls, floor, ceiling, and equipment in a room create a reverberant sound field that alters the sound wave characteristics from those for the free field. So the model was validated for relatively low absorption room at NIT Kurukshetra Central Workshop. The results of validation pointed out that the estimated sound power of noise sources under simultaneous conditions were on lower side, within the error limits 3.56 - 6.35 %. Thus suggesting the use of this methodology for practical implementation in industry. To demonstrate the application of the above analytical procedure for estimating the sound power of noise sources under simultaneous operating conditions, a manufacturing facility (Railway Workshop at Yamunanagar, India) having five sound sources (machines) on its workshop floor is considered in this study. The findings of the case study had identified the two most effective candidates (noise sources) for noise control in the Railway Workshop Yamunanagar, India. The study suggests that the modification in the design and/or replacement of these two identified noisiest sources (machine) would be necessary so as to achieve an effective reduction in noise levels. Further, the estimated data allows engineers to better understand the noise situations of the workplace and to revise the map when changes occur in noise level due to a workplace re-layout.

Removal of Pharmaceutical Compounds by a Sequential Treatment of Ozonation Followed by Fenton Process: Influence of the Water Matrix

A sequential treatment of ozonation followed by a Fenton or photo-Fenton process, using black light lamps (365 nm) in this latter case, has been applied to remove a mixture of pharmaceutical compounds and the generated by-products both in ultrapure and secondary treated wastewater. The scientifictechnological innovation of this study stems from the in situ generation of hydrogen peroxide from the direct ozonation of pharmaceuticals, and can later be used in the application of Fenton and photo-Fenton processes. The compounds selected as models were sulfamethoxazol and acetaminophen. It should be remarked that the use of a second process is necessary as a result of the low mineralization yield reached by the exclusive application of ozone. Therefore, the influence of the water matrix has been studied in terms of hydrogen peroxide concentration, individual compound concentration and total organic carbon removed. Moreover, the concentration of different iron species in solution has been measured.