Wireless Body Area Network’s Mitigation Method Using Equalization

A wireless body area sensor network (WBASN) is composed of a central node and heterogeneous sensors to supervise the physiological signals and functions of the human body. This overwhelmimg area has stimulated new research and calibration processes, especially in the area of WBASN’s attainment and fidelity. In the era of mobility or imbricated WBASN’s, system performance incomparably degrades because of unstable signal integrity. Hence, it is mandatory to define mitigation techniques in the design to avoid interference. There are various mitigation methods available e.g. diversity techniques, equalization, viterbi decoder etc. This paper presents equalization mitigation scheme in WBASNs to improve the signal integrity. Eye diagrams are also given to represent accuracy of the signal. Maximum no. of symbols is taken to authenticate the signal which in turn results in accuracy and increases the overall performance of the system.

Risk Based Maintenance Planning for Loading Equipment in Underground Hard Rock Mine: Case Study

Mining industry is known for its appetite to spend sizeable capital on mine equipment. However, in the current scenario, the mining industry is challenged by daunting factors of non-uniform geological conditions, uneven ore grade, uncontrollable and volatile mineral commodity prices and the ever increasing quest to optimize the capital and operational costs. Thus, the role of equipment reliability and maintenance planning inherits a significant role in augmenting the equipment availability for the operation and in turn boosting the mine productivity. This paper presents the Risk Based Maintenance (RBM) planning conducted on mine loading equipment namely Load Haul Dumpers (LHDs) at Vedanta Resources Ltd subsidiary Hindustan Zinc Limited operated Sindesar Khurd Mines, an underground zinc and lead mine situated in Dariba, Rajasthan, India. The mining equipment at the location is maintained by the Original Equipment Manufacturers (OEMs) namely Sandvik and Atlas Copco, who carry out the maintenance and inspection operations for the equipment. Based on the downtime data extracted for the equipment fleet over the period of 6 months spanning from 1st January 2017 until 30th June 2017, it was revealed that significant contribution of three downtime issues related to namely Engine, Hydraulics, and Transmission to be common among all the loading equipment fleet and substantiated by Pareto Analysis. Further scrutiny through Bubble Matrix Analysis of the given factors revealed the major influence of selective factors namely Overheating, No Load Taken (NTL) issues, Gear Changing issues and Hose Puncture and leakage issues. Utilizing the equipment wise analysis of all the downtime factors obtained, spares consumed, and the alarm logs extracted from the machines, technical design changes in the equipment and pre shift critical alarms checklist were proposed for the equipment maintenance. The given analysis is beneficial to allow OEMs or mine management to focus on the critical issues hampering the reliability of mine equipment and design necessary maintenance strategies to mitigate them.

A Construction Management Tool: Determining a Project Schedule Typical Behaviors Using Cluster Analysis

Delays in the construction industry are a global phenomenon. Many construction projects experience extensive delays exceeding the initially estimated completion time. The main purpose of this study is to identify construction projects typical behaviors in order to develop a prognosis and management tool. Being able to know a construction projects schedule tendency will enable evidence-based decision-making to allow resolutions to be made before delays occur. This study presents an innovative approach that uses Cluster Analysis Method to support predictions during Earned Value Analyses. A clustering analysis was used to predict future scheduling, Earned Value Management (EVM), and Earned Schedule (ES) principal Indexes behaviors in construction projects. The analysis was made using a database with 90 different construction projects. It was validated with additional data extracted from literature and with another 15 contrasting projects. For all projects, planned and executed schedules were collected and the EVM and ES principal indexes were calculated. A complete linkage classification method was used. In this way, the cluster analysis made considers that the distance (or similarity) between two clusters must be measured by its most disparate elements, i.e. that the distance is given by the maximum span among its components. Finally, through the use of EVM and ES Indexes and Tukey and Fisher Pairwise Comparisons, the statistical dissimilarity was verified and four clusters were obtained. It can be said that construction projects show an average delay of 35% of its planned completion time. Furthermore, four typical behaviors were found and for each of the obtained clusters, the interim milestones and the necessary rhythms of construction were identified. In general, detected typical behaviors are: (1) Projects that perform a 5% of work advance in the first two tenths and maintain a constant rhythm until completion (greater than 10% for each remaining tenth), being able to finish on the initially estimated time. (2) Projects that start with an adequate construction rate but suffer minor delays culminating with a total delay of almost 27% of the planned time. (3) Projects which start with a performance below the planned rate and end up with an average delay of 64%, and (4) projects that begin with a poor performance, suffer great delays and end up with an average delay of a 120% of the planned completion time. The obtained clusters compose a tool to identify the behavior of new construction projects by comparing their current work performance to the validated database, thus allowing the correction of initial estimations towards more accurate completion schedules.

Collective Redress in Consumer Protection in South East Europe: Cross-National Comparisons, Issues of Commonality and Difference

In recent decades, there have been significant developments in the European Union in the field of collective consumer redress. South East European countries (SEE) covered by this paper, in line with their EU accession priorities and duties under Stabilisation and Association Agreements, have to harmonize their national laws with the relevant EU acquis for consumer protection (Chapter 28: Health and Consumer). In these countries, only minimal compliance is achieved. SEE countries have introduced rudimentary collective redress mechanisms, with modest enforcement of collective redress and case law. This paper is based on comprehensive interdisciplinary research conducted for SEE countries on common principles for injunctive and compensatory collective redress mechanisms, emphasizing cross-national comparisons, underlining issues of commonality and difference aiming to develop recommendations for an adequate enforcement of collective redress. SEE countries are recognized by the sectoral approach for regulating collective redress contrary to the majority of EU Member States with having adopted horizontal approach to collective redress. In most SEE countries, the laws do not recognize compensatory but only injunctive collective redress in consumer protection. All responsible stakeholders for implementation of collective redress in SEE countries, lack information and awareness on collective redress mechanisms and the way they function in practice. Therefore, specific actions are needed in these countries to make the whole system of collective redress for consumer protection operational and efficient. Taking into consideration the various designated stakeholders in collective redress in each SEE countries, there is a need of their mutual coordination and cooperation in order to develop consumer protection system and policies. By putting into practice the national collective redress mechanisms, effective access to justice for all consumers, the principle of rule of law will be secured and appropriate procedural guarantees to avoid abusive litigation will be ensured.

Time Series Modelling and Prediction of River Runoff: Case Study of Karkheh River, Iran

Rainfall and runoff phenomenon is a chaotic and complex outcome of nature which requires sophisticated modelling and simulation methods for explanation and use. Time Series modelling allows runoff data analysis and can be used as forecasting tool. In the paper attempt is made to model river runoff data and predict the future behavioural pattern of river based on annual past observations of annual river runoff. The river runoff analysis and predict are done using ARIMA model. For evaluating the efficiency of prediction to hydrological events such as rainfall, runoff and etc., we use the statistical formulae applicable. The good agreement between predicted and observation river runoff coefficient of determination (R2) display that the ARIMA (4,1,1) is the suitable model for predicting Karkheh River runoff at Iran.

Comparison of Electrical Parameters of Oil-Immersed and Dry-Type Transformer Using Finite Element Method

The choice evaluation between oil-immersed and dry-type transformers is often controlled by cost, location, and application. This paper compares the electrical performance of liquid- filled and dry-type transformers, which will assist the customer to choose the right and efficient ones for particular applications. An accurate assessment of the time-average flux density, electric field intensity and voltage distribution in an oil-insulated and a dry-type transformer have been computed and investigated. The detailed transformer modeling and analysis has been carried out to determine electrical parameter distributions. The models of oil-immersed and dry-type transformers are developed and solved by using the finite element method (FEM) to compare the electrical parameters. The effects of non-uniform and non-coherent voltage gradient, flux density and electric field distribution on the power losses and insulation properties of transformers are studied in detail. The results show that, for the same voltage and kilo-volt-ampere (kVA) rating, oil-immersed transformers have better insulation properties and less hysteresis losses than the dry-type.

Applications of Social Marketing in Road Safety of Georgia

The aim of the paper is to explore the role of social marketing in changing the behavior of consumers on road safety, identify critical aspects and priority needs which impede the implementation of road safety program in Georgia. Given the goals of the study, a quantitative method was used to carry out interviews for primary data collection. This research identified the awareness level of road safety, legislation base, and marketing interventions to change behavior of drivers and pedestrians. During several years the non-governmental sector together with the local authorities and media have been very intensively working on the road safety issue in Georgia, but only seat-belts campaign should be considered rather successful. Despite achievements in this field, efficiency of road safety programs far from fulfillment and needs strong empowering.

Identification of Disease Causing DNA Motifs in Human DNA Using Clustering Approach

Studying DNA (deoxyribonucleic acid) sequence is useful in biological processes and it is applied in the fields such as diagnostic and forensic research. DNA is the hereditary information in human and almost all other organisms. It is passed to their generations. Earlier stage detection of defective DNA sequence may lead to many developments in the field of Bioinformatics. Nowadays various tedious techniques are used to identify defective DNA. The proposed work is to analyze and identify the cancer-causing DNA motif in a given sequence. Initially the human DNA sequence is separated as k-mers using k-mer separation rule. The separated k-mers are clustered using Self Organizing Map (SOM). Using Levenshtein distance measure, cancer associated DNA motif is identified from the k-mer clusters. Experimental results of this work indicate the presence or absence of cancer causing DNA motif. If the cancer associated DNA motif is found in DNA, it is declared as the cancer disease causing DNA sequence. Otherwise the input human DNA is declared as normal sequence. Finally, elapsed time is calculated for finding the presence of cancer causing DNA motif using clustering formation. It is compared with normal process of finding cancer causing DNA motif. Locating cancer associated motif is easier in cluster formation process than the other one. The proposed work will be an initiative aid for finding genetic disease related research.

Design Approach to Incorporate Unique Performance Characteristics of Special Concrete

The advancement in various concrete ingredients like plasticizers, additives and fibers, etc. has enabled concrete technologists to develop many viable varieties of special concretes in recent decades. Such various varieties of concrete have significant enhancement in green as well as hardened properties of concrete. A prudent selection of appropriate type of concrete can resolve many design and application issues in construction projects. This paper focuses on usage of self-compacting concrete, high early strength concrete, structural lightweight concrete, fiber reinforced concrete, high performance concrete and ultra-high strength concrete in the structures. The modified properties of strength at various ages, flowability, porosity, equilibrium density, flexural strength, elasticity, permeability etc. need to be carefully studied and incorporated into the design of the structures. The paper demonstrates various mixture combinations and the concrete properties that can be leveraged. The selection of such products based on the end use of structures has been proposed in order to efficiently utilize the modified characteristics of these concrete varieties. The study involves mapping the characteristics with benefits and savings for the structure from design perspective. Self-compacting concrete in the structure is characterized by high shuttering loads, better finish, and feasibility of closer reinforcement spacing. The structural design procedures can be modified to specify higher formwork strength, height of vertical members, cover reduction and increased ductility. The transverse reinforcement can be spaced at closer intervals compared to regular structural concrete. It allows structural lightweight concrete structures to be designed for reduced dead load, increased insulation properties. Member dimensions and steel requirement can be reduced proportionate to about 25 to 35 percent reduction in the dead load due to self-weight of concrete. Steel fiber reinforced concrete can be used to design grade slabs without primary reinforcement because of 70 to 100 percent higher tensile strength. The design procedures incorporate reduction in thickness and joint spacing. High performance concrete employs increase in the life of the structures by improvement in paste characteristics and durability by incorporating supplementary cementitious materials. Often, these are also designed for slower heat generation in the initial phase of hydration. The structural designer can incorporate the slow development of strength in the design and specify 56 or 90 days strength requirement. For designing high rise building structures, creep and elasticity properties of such concrete also need to be considered. Lastly, certain structures require a performance under loading conditions much earlier than final maturity of concrete. High early strength concrete has been designed to cater to a variety of usages at various ages as early as 8 to 12 hours. Therefore, an understanding of concrete performance specifications for special concrete is a definite door towards a superior structural design approach.

Lateral Torsional Buckling Resistance of Trapezoidally Corrugated Web Girders

Due to the numerous advantages of steel corrugated web girders, its application field is growing for bridges as well as for buildings. The global stability behavior of such girders is significantly larger than those of conventional I-girders with flat web, thus the application of the structural steel material can be significantly reduced. Design codes and specifications do not provide clear and complete rules or recommendations for the determination of the lateral torsional buckling (LTB) resistance of corrugated web girders. Therefore, the authors made a thorough investigation regarding the LTB resistance of the corrugated web girders. Finite element (FE) simulations have been performed to develop new design formulas for the determination of the LTB resistance of trapezoidally corrugated web girders. FE model is developed considering geometrical and material nonlinear analysis using equivalent geometric imperfections (GMNI analysis). The equivalent geometric imperfections involve the initial geometric imperfections and residual stresses coming from rolling, welding and flame cutting. Imperfection sensitivity analysis was performed to determine the necessary magnitudes regarding only the first eigenmodes shape imperfections. By the help of the validated FE model, an extended parametric study is carried out to investigate the LTB resistance for different trapezoidal corrugation profiles. First, the critical moment of a specific girder was calculated by FE model. The critical moments from the FE calculations are compared to the previous analytical calculation proposals. Then, nonlinear analysis was carried out to determine the ultimate resistance. Due to the numerical investigations, new proposals are developed for the determination of the LTB resistance of trapezoidally corrugated web girders through a modification factor on the design method related to the conventional flat web girders.

Cessna Citation X Performances Improvement by an Adaptive Winglet during the Cruise Flight

As part of a ‘Morphing-Wing’ idea, this study consists of measuring how a winglet, which is able to change its shape during the flight, is efficient. Conventionally, winglets are fixed-vertical platforms at the wingtips, optimized for a cruise condition that the airplane should use most of the time. However, during a cruise, an airplane flies through a lot of cruise conditions corresponding to altitudes variations from 30,000 to 45,000 ft. The fixed winglets are not optimized for these variations, and consequently, they are supposed to generate some drag, and thus to deteriorate aircraft fuel consumption. This research assumes that it exists a winglet position that reduces the fuel consumption for each cruise condition. In this way, the methodology aims to find these optimal winglet positions, and to further simulate, and thus estimate the fuel consumption of an aircraft wearing this type of adaptive winglet during several cruise conditions. The adaptive winglet is assumed to have degrees of freedom given by the various changes of following surfaces: the tip chord, the sweep and the dihedral angles. Finally, results obtained during cruise simulations are presented in this paper. These results show that an adaptive winglet can reduce, thus improve up to 2.12% the fuel consumption of an aircraft during a cruise.

The Study on the Overall Protection of the Ancient Villages

The discussion about elements of cultural heritage and their relevance among the ancient villages is comparably insufficient. The protection work is strongly influenced by touristic development and cultural gimmick, resulting in low protection efficiency and many omissions. Historical villages as the cultural settlement patterns bear a large number of heritage relics. They were regionally scattered with a clear characteristic of gathering. First of all, this study proposes the association and similarities of the forming mechanism between four historic cultural villages in Mian Mountain. Secondly, the study reveals that these villages own the strategic pass, underground passage, and the mountain barrier. Thirdly, based on the differentiated characteristics of villages’ space, the study discusses about the integrated conservation from three levels: the regional heritage conservation, the cultural line shaping, and the featured brand building.

Comparing Test Equating by Item Response Theory and Raw Score Methods with Small Sample Sizes on a Study of the ARTé: Mecenas Learning Game

The purpose of the present research is to equate two test forms as part of a study to evaluate the educational effectiveness of the ARTé: Mecenas art history learning game. The researcher applied Item Response Theory (IRT) procedures to calculate item, test, and mean-sigma equating parameters. With the sample size n=134, test parameters indicated “good” model fit but low Test Information Functions and more acute than expected equating parameters. Therefore, the researcher applied equipercentile equating and linear equating to raw scores and compared the equated form parameters and effect sizes from each method. Item scaling in IRT enables the researcher to select a subset of well-discriminating items. The mean-sigma step produces a mean-slope adjustment from the anchor items, which was used to scale the score on the new form (Form R) to the reference form (Form Q) scale. In equipercentile equating, scores are adjusted to align the proportion of scores in each quintile segment. Linear equating produces a mean-slope adjustment, which was applied to all core items on the new form. The study followed a quasi-experimental design with purposeful sampling of students enrolled in a college level art history course (n=134) and counterbalancing design to distribute both forms on the pre- and posttests. The Experimental Group (n=82) was asked to play ARTé: Mecenas online and complete Level 4 of the game within a two-week period; 37 participants completed Level 4. Over the same period, the Control Group (n=52) did not play the game. The researcher examined between group differences from post-test scores on test Form Q and Form R by full-factorial Two-Way ANOVA. The raw score analysis indicated a 1.29% direct effect of form, which was statistically non-significant but may be practically significant. The researcher repeated the between group differences analysis with all three equating methods. For the IRT mean-sigma adjusted scores, form had a direct effect of 8.39%. Mean-sigma equating with a small sample may have resulted in inaccurate equating parameters. Equipercentile equating aligned test means and standard deviations, but resultant skewness and kurtosis worsened compared to raw score parameters. Form had a 3.18% direct effect. Linear equating produced the lowest Form effect, approaching 0%. Using linearly equated scores, the researcher conducted an ANCOVA to examine the effect size in terms of prior knowledge. The between group effect size for the Control Group versus Experimental Group participants who completed the game was 14.39% with a 4.77% effect size attributed to pre-test score. Playing and completing the game increased art history knowledge, and individuals with low prior knowledge tended to gain more from pre- to post test. Ultimately, researchers should approach test equating based on their theoretical stance on Classical Test Theory and IRT and the respective  assumptions. Regardless of the approach or method, test equating requires a representative sample of sufficient size. With small sample sizes, the application of a range of equating approaches can expose item and test features for review, inform interpretation, and identify paths for improving instruments for future study.

Steady State Rolling and Dynamic Response of a Tire at Low Frequency

Tire noise has a significant impact on ride quality and vehicle interior comfort, even at low frequency. Reduction of tire noise is especially important due to strict state and federal environmental regulations. The primary sources of tire noise are the low frequency structure-borne noise and the noise that originates from the release of trapped air between the tire tread and road surface during each revolution of the tire. The frequency response of the tire changes at low and high frequency. At low frequency, the tension and bending moment become dominant, while the internal structure and local deformation become dominant at higher frequencies. Here, we analyze tire response in terms of deformation and rolling velocity at low revolution frequency. An Abaqus FEA finite element model is used to calculate the static and dynamic response of a rolling tire under different rolling conditions. The natural frequencies and mode shapes of a deformed tire are calculated with the FEA package where the subspace-based steady state dynamic analysis calculates dynamic response of tire subjected to harmonic excitation. The analysis was conducted on the dynamic response at the road (contact point of tire and road surface) and side nodes of a static and rolling tire when the tire was excited with 200 N vertical load for a frequency ranging from 20 to 200 Hz. The results show that frequency has little effect on tire deformation up to 80 Hz. But between 80 and 200 Hz, the radial and lateral components of displacement of the road and side nodes exhibited significant oscillation. For the static analysis, the fluctuation was sharp and frequent and decreased with frequency. In contrast, the fluctuation was periodic in nature for the dynamic response of the rolling tire. In addition to the dynamic analysis, a steady state rolling analysis was also performed on the tire traveling at ground velocity with a constant angular motion. The purpose of the computation was to demonstrate the effect of rotating motion on deformation and rolling velocity with respect to a fixed Newtonian reference point. The analysis showed a significant variation in deformation and rolling velocity due to centrifugal and Coriolis acceleration with respect to a fixed Newtonian point on ground.

Three-Dimensional, Non-Linear Finite Element Analysis of Bullet Penetration through Thin AISI 4340 Steel Target Plate

Bullet penetration in steel plate is investigated with the help of three-dimensional, non-linear, transient, dynamic, finite elements analysis using explicit time integration code LSDYNA. The effect of large strain, strain-rate and temperature at very high velocity regime was studied from number of simulations of semi-spherical nose shape bullet penetration through single layered circular plate with 2 mm thickness at impact velocities of 500, 1000, and 1500 m/s with the help of Johnson Cook material model. Mie-Gruneisen equation of state is used in conjunction with Johnson Cook material model to determine pressure-volume relationship at various points of interests. Two material models viz. Plastic-Kinematic and Johnson- Cook resulted in different deformation patterns in steel plate. It is observed from the simulation results that the velocity drop and loss of kinetic energy occurred very quickly up to perforation of plate, after that the change in velocity and changes in kinetic energy are negligibly small. The physics behind this kind of behaviour is presented in the paper.

Improvement to Pedestrian Walkway Facilities to Enhance Pedestrian Safety-Initiatives in India

Deteriorating quality of the pedestrian environment and the increasing risk of pedestrian crashes are major concerns for most of the cities in India. The recent shift in the priority to motorized transport and the abating condition of existing pedestrian facilities can be considered as prime reasons for the increasing pedestrian related crashes in India. Bengaluru City – the IT capital hub of the nation is not much different from this. The increase in number of pedestrian crashes in Bengaluru reflects the same. To resolve this issue and to ensure safe, sustainable and pedestrian friendly sidewalks, Govt. of Karnataka, India has implemented newfangled pedestrian sidewalks popularized programme named Tender S.U.R.E. (Specifications for Urban Road Execution) projects. Tender SURE adopts unique urban street design guidelines where the pedestrians are given prime preference. The present study presents an assessment of the quality and performance of the pedestrian side walk and the walkability index of the newly built pedestrian friendly sidewalks. Various physical and environmental factors affecting pedestrian safety are identified and studied in detail. The pedestrian mobility is quantified through Pedestrian Level of Service (PLoS) and the pedestrian walking comfort is measured by calculating the Walkability Index (WI). It is observed that the new initiatives taken in reference to improving pedestrian safety have succeeded in Bengaluru by attaining a level of Service of ‘A’ and with a good WI score.

Design Development of Floating Performance Structure for Coastal Areas in the Maltese Islands

Background: Islands in the Mediterranean region offer opportunities for various industries to take advantage of the facilitation and use of versatile floating structures in coastal areas. In the context of dense land use, marine structures can contribute to ensure both terrestrial and marine resource sustainability. Objective: The aim of this paper is to present and critically discuss an array of issues that characterize the design process of a floating structure for coastal areas and to present the challenges and opportunities of providing such multifunctional and versatile structures around the Maltese coastline. Research Design: A three-tier research design commenced with a systematic literature review. Semi-structured interviews with stakeholders including a naval architect, a marine engineer and civil designers were conducted. A second stage preceded a focus group with stakeholders in design and construction of marine lightweight structures. The three tier research design ensured triangulation of issues. All phases of the study were governed by research ethics. Findings: Findings were grouped into three main themes: excellence, impact and implementation. These included design considerations, applications and potential impacts on local industry. Literature for the design and construction of marine structures in the Maltese Islands presented multiple gaps in the application of marine structures for local industries. Weather conditions, depth of sea bed and wave actions presented limitations on the design capabilities of the structure. Conclusion: Water structures offer great potential and conclusions demonstrate the applicability of such designs for Maltese waters. There is still no such provision within Maltese coastal areas for multi-purpose use. The introduction of such facilities presents a range of benefits for visiting tourists and locals thereby offering wide range of services to tourism and marine industry. Costs for construction and adverse weather conditions were amongst the main limitations that shaped design capacities of the water structures.

Regulation, Co-Regulation and Self-Regulation of Civil Unmanned Aircrafts in Europe

Safety and security concerns play a key role during the design of civil UAs (aircraft controlled by a pilot who is not onboard it) by the producers and the offer of different services by the operators. At present, European countries have fragmented regulations about the manufacture and use of civil drones, therefore the European institutions are trying to approach all these regulations into a common one. In this sense, not only law but also ethics can give guidelines to the industry in order to obtain better reports from their clients. With our results, we would like to give advice to the European industry, as well as give new insights to the academia and policymakers.

Performance Study of ZigBee-Based Wireless Sensor Networks

The IEEE 802.15.4 standard is designed for low-rate wireless personal area networks (LR-WPAN) with focus on enabling wireless sensor networks. It aims to give a low data rate, low power consumption, and low cost wireless networking on the device-level communication. The objective of this study is to investigate the performance of IEEE 802.15.4 based networks using simulation tool. In this project the network simulator 2 NS2 was used to several performance measures of wireless sensor networks. Three scenarios were considered, multi hop network with a single coordinator, star topology, and an ad hoc on demand distance vector AODV. Results such as packet delivery ratio, hop delay, and number of collisions are obtained from these scenarios.

Experimental Simulation Set-Up for Validating Out-Of-The-Loop Mitigation when Monitoring High Levels of Automation in Air Traffic Control

An increasing degree of automation in air traffic will also change the role of the air traffic controller (ATCO). ATCOs will fulfill significantly more monitoring tasks compared to today. However, this rather passive role may lead to Out-Of-The-Loop (OOTL) effects comprising vigilance decrement and less situation awareness. The project MINIMA (Mitigating Negative Impacts of Monitoring high levels of Automation) has conceived a system to control and mitigate such OOTL phenomena. In order to demonstrate the MINIMA concept, an experimental simulation set-up has been designed. This set-up consists of two parts: 1) a Task Environment (TE) comprising a Terminal Maneuvering Area (TMA) simulator as well as 2) a Vigilance and Attention Controller (VAC) based on neurophysiological data recording such as electroencephalography (EEG) and eye-tracking devices. The current vigilance level and the attention focus of the controller are measured during the ATCO’s active work in front of the human machine interface (HMI). The derived vigilance level and attention trigger adaptive automation functionalities in the TE to avoid OOTL effects. This paper describes the full-scale experimental set-up and the component development work towards it. Hence, it encompasses a pre-test whose results influenced the development of the VAC as well as the functionalities of the final TE and the two VAC’s sub-components.