Cascaded ANN for Evaluation of Frequency and Air-gap Voltage of Self-Excited Induction Generator

Self-Excited Induction Generator (SEIG) builds up voltage while it enters in its magnetic saturation region. Due to non-linear magnetic characteristics, the performance analysis of SEIG involves cumbersome mathematical computations. The dependence of air-gap voltage on saturated magnetizing reactance can only be established at rated frequency by conducting a laboratory test commonly known as synchronous run test. But, there is no laboratory method to determine saturated magnetizing reactance and air-gap voltage of SEIG at varying speed, terminal capacitance and other loading conditions. For overall analysis of SEIG, prior information of magnetizing reactance, generated frequency and air-gap voltage is essentially required. Thus, analytical methods are the only alternative to determine these variables. Non-existence of direct mathematical relationship of these variables for different terminal conditions has forced the researchers to evolve new computational techniques. Artificial Neural Networks (ANNs) are very useful for solution of such complex problems, as they do not require any a priori information about the system. In this paper, an attempt is made to use cascaded neural networks to first determine the generated frequency and magnetizing reactance with varying terminal conditions and then air-gap voltage of SEIG. The results obtained from the ANN model are used to evaluate the overall performance of SEIG and are found to be in good agreement with experimental results. Hence, it is concluded that analysis of SEIG can be carried out effectively using ANNs.

Biological Characterization of the New Invasive Brine Shrimp Artemia franciscana in Tunisia: Sabkhet Halk El-Menzel

Endemic Artemia franciscana populations can be found throughout the American continent and also as an introduced specie in several country all over the world, such as in the Mediterranean region where Artemia franciscana was identified as an invasive specie replacing native Artemia parthenogenetica and Artemia salina. In the present study, the characterization of the new invasive Artemia franciscana reported from Sabkhet Halk El-Menzel (Tunisia) was done based on the cysts biometry, nauplii instar-I length, Adult sexual dimorphism and fatty acid profile. The mean value of the diameter of non-decapsulated and decapsulated cysts, chorion thickness and naupliar length is 235.8, 226.3, 4.75 and 426.8 μm, respectively. Sexual dimorphism for adults specimen showed that maximal distance between compound eyes, diameter for compound eyes, length of first antenna and the abdomen length compared to the total body length ratio, are the most important variables for males and females discrimination with a total contribution of 62.39 %. The analysis of fatty acid methyl esters profile of decapsulated cysts resulted in low levels of linolenic acid (LLA, C18:3n-3) and high levels of eicosapentaenoic acid (EPA, C20:5n-3) with 3.11 and 11.10 %, respectively. Low quantity of docosahexaenoic acid (DHA, 22:6n-3) was also observed with 0.17 mg.g-1 dry weight.

On the EM Algorithm and Bootstrap Approach Combination for Improving Satellite Image Fusion

This paper discusses EM algorithm and Bootstrap approach combination applied for the improvement of the satellite image fusion process. This novel satellite image fusion method based on estimation theory EM algorithm and reinforced by Bootstrap approach was successfully implemented and tested. The sensor images are firstly split by a Bayesian segmentation method to determine a joint region map for the fused image. Then, we use the EM algorithm in conjunction with the Bootstrap approach to develop the bootstrap EM fusion algorithm, hence producing the fused targeted image. We proposed in this research to estimate the statistical parameters from some iterative equations of the EM algorithm relying on a reference of representative Bootstrap samples of images. Sizes of those samples are determined from a new criterion called 'hybrid criterion'. Consequently, the obtained results of our work show that using the Bootstrap EM (BEM) in image fusion improve performances of estimated parameters which involve amelioration of the fused image quality; and reduce the computing time during the fusion process.

Analysis of Equal cost Adaptive Routing Algorithms using Connection-Oriented and Connectionless Protocols

This research paper evaluates and compares the performance of equal cost adaptive multi-path routing algorithms taking the transport protocols TCP (Transmission Control Protocol) and UDP (User Datagram Protocol) using network simulator ns2 and concludes which one is better.

Service Architecture for 3rd Party Operator's Participation

Next generation networks with the idea of convergence of service and control layer in existing networks (fixed, mobile and data) and with the intention of providing services in an integrated network, has opened new horizon for telecom operators. On the other hand, economic problems have caused operators to look for new source of income including consider new services, subscription of more users and their promotion in using morenetwork resources and easy participation of service providers or 3rd party operators in utilizing networks. With this requirement, an architecture based on next generation objectives for service layer is necessary. In this paper, a new architecture based on IMS model explains participation of 3rd party operators in creation and implementation of services on an integrated telecom network.

Planning the Building Evacuation Routes by a Spatial Network

The previous proposed evacuation routing approaches usually divide the space into multiple interlinked zones. However, it may be harder to clearly and objectively define the margins of each zone. This paper proposes an approach that connects locations of necessary guidance into a spatial network. In doing so, evacuation routes can be constructed based on the links between starting points, turning nodes, and terminal points. This approach more conforms to the real-life evacuation behavior. The feasibility of the proposed approach is evaluated through a case of one floor in a hospital building. Results indicate that the proposed approach provides valuable suggestions for evacuation planning.

Using Services Oriented Architecture to Improve Efficient Web-Services for Postgraduate Students

The main aim of this paper is to present the research findings on the solution of centralized Web-Services for students by adopting a framework and a prototype for Service Oriented Architecture (SOA) Web-Services. The current situation of students- Web-based application services has been identified and proposed an effective SOA to increase the operational efficiency of Web-Services for them it was necessary to identify the challenges in delivering a SOA technology to increase operational efficiency of Web-Services. Moreover, the SOA is an emerging concept, used for delivering efficient student SOA Web-Services. Therefore, service reusability from SOA Web-Services is provided and logically divided services into smaller services to increase reusability and modularity. In this case each service is a modular unit by itself and interoperability services.

The Index of Sustainable Functionality: An Application for Measuring Sustainability

The index of sustainable functionality (ISF) is an adaptive, multi-criteria technique that is used to measure sustainability; it is a concept that can be transposed to many regions throughout the world. An ISF application of the Southern Regional Organisation of Councils (SouthROC) in South East Queensland (SEQ) – the fastest growing region in Australia – indicated over a 25 year period an increase of over 10% level of functionality from 58.0% to 68.3%. The ISF of SouthROC utilised methodologies that derived from an expert panel based approach. The overall results attained an intermediate level of functionality which amounted to related concerns of economic progress and lack of social awareness. Within the region, a solid basis for future testing by way of measured changes and developed trends can be established. In this regard as management tool, the ISF record offers support for regional sustainability practice and decision making alike. This research adaptively analyses sustainability – a concept that is lacking throughout much of the academic literature and any reciprocal experimentation. This lack of knowledge base has been the emphasis of where future sustainability research can grow from and prove useful in rapidly growing regions. It is the intentions of this research to help further develop the notions of index-based quantitative sustainability.

Influence of Silica Fume on High Strength Lightweight Concrete

The main objective of this paper is to determine the isolated effect of silica fume on tensile, compressive and flexure strengths on high strength lightweight concrete. Many experiments were carried out by replacing cement with different percentages of silica fume at different constant water-binder ratio keeping other mix design variables constant. The silica fume was replaced by 0%, 5%, 10%, 15%, 20% and 25% for a water-binder ratios ranging from 0.26 to 0.42. For all mixes, split tensile, compressive and flexure strengths were determined at 28 days. The results showed that the tensile, compressive and flexure strengths increased with silica fume incorporation but the optimum replacement percentage is not constant because it depends on the water–cementitious material (w/cm) ratio of the mix. Based on the results, a relationship between split tensile, compressive and flexure strengths of silica fume concrete was developed using statistical methods.

An Impairment Sensitive and Reliable SR-ARQ Mechanism for Unreliable Feedback in GPRS

The advances in wireless communication have opened unlimited horizons but there are some challenges as well. The Nature derived air medium between MS (Mobile Station) and BS (Base Station) is beyond human control and produces channel impairment. The impact of the natural conditions at the air medium is the biggest issue in wireless communication. Natural conditions make reliability more cumbersome; here reliability refers to the efficient recovery of the lost or erroneous data. The SR-ARQ (Selective Repeat-Automatic Repeat Request) protocol is a de facto standard for any wireless technology at the air interface with its standard reliability features. Our focus in this research is on the reliability of the control or feedback signal of the SR-ARQ protocol. The proposed mechanism, RSR-ARQ (Reliable SR-ARQ) is an enhancement of the SR-ARQ protocol that has ensured the reliability of the control signals through channel impairment sensitive mechanism. We have modeled the system under two-state discrete time Markov Channel. The simulation results demonstrate the better recovery of the lost or erroneous data that will increase the overall system performance.

A Study on the Application of TRIZ to CAD/CAM System

This study created new graphical icons and operating functions in a CAD/CAM software system by analyzing icons in some of the popular systems, such as AutoCAD, AlphaCAM, Mastercam and the 1st edition of LiteCAM. These software systems all focused on geometric design and editing, thus how to transmit messages intuitively from icon itself to users is an important function of graphical icons. The primary purpose of this study is to design innovative icons and commands for new software. This study employed the TRIZ method, an innovative design method, to generate new concepts systematically. Through literature review, it then investigated and analyzed the relationship between TRIZ and idea development. Contradiction Matrix and 40 Principles were used to develop an assisting tool suitable for icon design in software development. We first gathered icon samples from the selected CAD/CAM systems. Then grouped these icons by meaningful functions, and compared useful and harmful properties. Finally, we developed new icons for new software systems in order to avoid intellectual property problem.

Arriving at an Optimum Value of Tolerance Factor for Compressing Medical Images

Medical imaging uses the advantage of digital technology in imaging and teleradiology. In teleradiology systems large amount of data is acquired, stored and transmitted. A major technology that may help to solve the problems associated with the massive data storage and data transfer capacity is data compression and decompression. There are many methods of image compression available. They are classified as lossless and lossy compression methods. In lossy compression method the decompressed image contains some distortion. Fractal image compression (FIC) is a lossy compression method. In fractal image compression an image is coded as a set of contractive transformations in a complete metric space. The set of contractive transformations is guaranteed to produce an approximation to the original image. In this paper FIC is achieved by PIFS using quadtree partitioning. PIFS is applied on different images like , Ultrasound, CT Scan, Angiogram, X-ray, Mammograms. In each modality approximately twenty images are considered and the average values of compression ratio and PSNR values are arrived. In this method of fractal encoding, the parameter, tolerance factor Tmax, is varied from 1 to 10, keeping the other standard parameters constant. For all modalities of images the compression ratio and Peak Signal to Noise Ratio (PSNR) are computed and studied. The quality of the decompressed image is arrived by PSNR values. From the results it is observed that the compression ratio increases with the tolerance factor and mammogram has the highest compression ratio. The quality of the image is not degraded upto an optimum value of tolerance factor, Tmax, equal to 8, because of the properties of fractal compression.

Tool for Helping Rural Woman Giving Birth

Giving birth is a natural process and most women have to go through it. Gynecologist or Midwife usually uses the leg holder to position the cervix in the stitching process. In some part of rural areas in Indonesia, the labor process normally being done at homes by calling in a midwife or gynecologist. The facilities for this kind of labor process is not yet sufficient, as the use of leg holder supposedly on the obstetric bed. The reality is that it is impossible to bring in the obstetric bed to the patient-s house at the time they call for giving birth or the time when the stitching of the cervix need to be done. This research is redesigning the leg holder through Biomechanics and ergonomic approaches to obtain the optimal design which is suitable to the user of a developing country such as Indonesia.

Efficient Dimensionality Reduction of Directional Overcurrent Relays Optimal Coordination Problem

Directional over current relays (DOCR) are commonly used in power system protection as a primary protection in distribution and sub-transmission electrical systems and as a secondary protection in transmission systems. Coordination of protective relays is necessary to obtain selective tripping. In this paper, an approach for efficiency reduction of DOCRs nonlinear optimum coordination (OC) is proposed. This was achieved by modifying the objective function and relaxing several constraints depending on the four constraints classification, non-valid, redundant, pre-obtained and valid constraints. According to this classification, the far end fault effect on the objective function and constraints, and in consequently on relay operating time, was studied. The study was carried out, firstly by taking into account the near-end and far-end faults in DOCRs coordination problem formulation; and then faults very close to the primary relays (nearend faults). The optimal coordination (OC) was achieved by simultaneously optimizing all variables (TDS and Ip) in nonlinear environment by using of Genetic algorithm nonlinear programming techniques. The results application of the above two approaches on 6-bus and 26-bus system verify that the far-end faults consideration on OC problem formulation don-t lose the optimality.

Systematic Functional Analysis Methods for Design Retrieval and Documentation

Apart from geometry, functionality is one of the most significant hallmarks of a product. The functionality of a product can be considered as the fundamental justification for a product existence. Therefore a functional analysis including a complete and reliable descriptor has a high potential to improve product development process in various fields especially in knowledge-based design. One of the important applications of the functional analysis and indexing is in retrieval and design reuse concept. More than 75% of design activity for a new product development contains reusing earlier and existing design know-how. Thus, analysis and categorization of product functions concluded by functional indexing, influences directly in design optimization. This paper elucidates and evaluates major classes for functional analysis by discussing their major methods. Moreover it is finalized by presenting a noble hybrid approach for functional analysis.

The Path to Web Intelligence Maturity

Web intelligence, if made personal, can fuel the process of building communications around the interests and preferences of each individual customer or prospect, by providing specific behavioral insights about each individual. To become fully efficient, Web intelligence must reach a stage of a high-level maturity, passing throughout a process that involves five steps: (1) Web site analysis; (2) Web site and advertising optimization; (3) Segment targeting; (4) Interactive marketing (online only); and (5) Interactive marketing (online and offline). Discussing these steps in detail, the paper uncovers the real gold mine that is personal-level Web intelligence.

Improving Image Quality in Remote Sensing Satellites using Channel Coding

Among other factors that characterize satellite communication channels is their high bit error rate. We present a system for still image transmission over noisy satellite channels. The system couples image compression together with error control codes to improve the received image quality while maintaining its bandwidth requirements. The proposed system is tested using a high resolution satellite imagery simulated over the Rician fading channel. Evaluation results show improvement in overall system including image quality and bandwidth requirements compared to similar systems with different coding schemes.

Identification, Prediction and Detection of the Process Fault in a Cement Rotary Kiln by Locally Linear Neuro-Fuzzy Technique

In this paper, we use nonlinear system identification method to predict and detect process fault of a cement rotary kiln. After selecting proper inputs and output, an input-output model is identified for the plant. To identify the various operation points in the kiln, Locally Linear Neuro-Fuzzy (LLNF) model is used. This model is trained by LOLIMOT algorithm which is an incremental treestructure algorithm. Then, by using this method, we obtained 3 distinct models for the normal and faulty situations in the kiln. One of the models is for normal condition of the kiln with 15 minutes prediction horizon. The other two models are for the two faulty situations in the kiln with 7 minutes prediction horizon are presented. At the end, we detect these faults in validation data. The data collected from White Saveh Cement Company is used for in this study.

Framework for Delivery Reliability in European Machinery and Equipment Industry

Today-s manufacturing companies are facing multiple and dynamic customer-supplier-relationships embedded in nonhierarchical production networks. This complex environment leads to problems with delivery reliability and wasteful turbulences throughout the entire network. This paper describes an operational model based on a theoretical framework which improves delivery reliability of each individual customer-supplier-relationship within non-hierarchical production networks of the European machinery and equipment industry. By developing a non-centralized coordination mechanism based on determining the value of delivery reliability and derivation of an incentive system for suppliers the number of in time deliveries can be increased and thus the turbulences in the production network smoothened. Comparable to an electronic stock exchange the coordination mechanism will transform the manual and nontransparent process of determining penalties for delivery delays into an automated and transparent market mechanism creating delivery reliability.

Revisiting Distributed Protocols for Mobility at the Application Layer

During more than a decade, many proposals and standards have been designed to deal with the mobility issues; however, there are still some serious limitations in basing solutions on them. In this paper we discuss the possibility of handling mobility at the application layer. We do this while revisiting the conventional implementation of the Two Phase Commit (2PC) protocol which is a fundamental asset of transactional technology for ensuring the consistent commitment of distributed transactions. The solution is based on an execution framework providing an efficient extension that is aware of the mobility and preserves the 2PC principle.