Uniformity of Dose Distribution in Radiation Fields Surrounding the Spine using Film Dosimetry and Comparison with 3D Treatment Planning Software

The overall penumbra is usually defined as the distance, p20–80, separating the 20% and 80% of the dose on the beam axis at the depth of interest. This overall penumbra accounts also for the fact that some photons emitted by the distal parts of the source are only partially attenuated by the collimator. Medulloblastoma is the most common type of childhood brain tumor and often spreads to the spine. Current guidelines call for surgery to remove as much of the tumor as possible, followed by radiation of the brain and spinal cord, and finally treatment with chemotherapy. The purpose of this paper was to present results on an Uniformity of dose distribution in radiation fields surrounding the spine using film dosimetry and comparison with 3D treatment planning software.

Empirical Analyses of Determinants of D.J.S.I.US Mean Returns

This study investigates the relationship between 10 year bond value, Yen/U.S dollar exchange rate, non-farm payrolls (all employs) and crude oil to U.S. Dow Jones Sustainability Index. A GARCH model is used to test these relationships for the period January 1st 1999 to January 31st 2008 using monthly data. Results show that an increase of the 10 year bond and non farm payrolls (all employs) lead to an increase of the D.J.S.I returns. On the contrary the volatility of the Yen/U.S dollar exchange rates as well as the increase of crude oil returns has negative effects on the U.S D.J.S.I returns. This study aims at assisting investors to understand the influences certain macroeconomic indicators have on the companies- stock returns as reported by the D.J.S.I.

Ranking Genes from DNA Microarray Data of Cervical Cancer by a local Tree Comparison

The major objective of this paper is to introduce a new method to select genes from DNA microarray data. As criterion to select genes we suggest to measure the local changes in the correlation graph of each gene and to select those genes whose local changes are largest. More precisely, we calculate the correlation networks from DNA microarray data of cervical cancer whereas each network represents a tissue of a certain tumor stage and each node in the network represents a gene. From these networks we extract one tree for each gene by a local decomposition of the correlation network. The interpretation of a tree is that it represents the n-nearest neighbor genes on the n-th level of a tree, measured by the Dijkstra distance, and, hence, gives the local embedding of a gene within the correlation network. For the obtained trees we measure the pairwise similarity between trees rooted by the same gene from normal to cancerous tissues. This evaluates the modification of the tree topology due to tumor progression. Finally, we rank the obtained similarity values from all tissue comparisons and select the top ranked genes. For these genes the local neighborhood in the correlation networks changes most between normal and cancerous tissues. As a result we find that the top ranked genes are candidates suspected to be involved in tumor growth. This indicates that our method captures essential information from the underlying DNA microarray data of cervical cancer.

Removal of Cationic Heavy Metal and HOC from Soil-Washed Water Using Activated Carbon

Soil washing process with a surfactant solution is a potential technology for the rapid removal of hydrophobic organic compound (HOC) from soil. However, large amount of washed water would be produced during operation and this should be treated effectively by proper methods. The soil washed water for complex contaminated site with HOC and heavy metals might contain high amount of pollutants such as HOC and heavy metals as well as used surfactant. The heavy metals in the soil washed water have toxic effects on microbial activities thus these should be removed from the washed water before proceeding to a biological waste-water treatment system. Moreover, the used surfactant solutions are necessary to be recovered for reducing the soil washing operation cost. In order to simultaneously remove the heavy metals and HOC from soil-washed water, activated carbon (AC) was used in the present study. In an anionic-nonionic surfactant mixed solution, the Cd(II) and phenanthrene (PHE) were effectively removed by adsorption on activated carbon. The removal efficiency for Cd(II) was increased from 0.027 mmol-Cd/g-AC to 0.142 mmol-Cd/g-AC as the mole ratio of SDS increased in the presence of PHE. The adsorptive capacity of PHE was also increased according to the SDS mole ratio due to the decrement of molar solubilization ratios (MSR) for PHE in an anionic-nonionic surfactant mixture. The simultaneous adsorption of HOC and cationic heavy metals using activated carbon could be a useful method for surfactant recovery and the reduction of heavy metal toxicity in a surfactant-enhanced soil washing process.

Implementation of an On-Line PD Measurement System Using HFCT

In order to perform on-line measuring and detection of PD signals, a total solution composing of an HFCT, A/D converter and a complete software package is proposed. The software package includes compensation of HFCT contribution, filtering and noise reduction using wavelet transform and soft calibration routines. The results have shown good performance and high accuracy.

Numerical Simulation of the Liquid-Vapor Interface Evolution with Material Properties

A satured liquid is warmed until boiling in a parallelepipedic boiler. The heat is supplied in a liquid through the horizontal bottom of the boiler, the other walls being adiabatic. During the process of boiling, the liquid evaporates through its free surface by deforming it. This surface which subdivides the boiler into two regions occupied on both sides by the boiled liquid (broth) and its vapor which surmounts it. The broth occupying the region and its vapor the superior region. A two- fluids model is used to describe the dynamics of the broth, its vapor and their interface. In this model, the broth is treated as a monophasic fluid (homogeneous model) and form with its vapor adiphasic pseudo fluid (two-fluid model). Furthermore, the interface is treated as a zone of mixture characterized by superficial void fraction noted α* . The aim of this article is to describe the dynamics of the interface between the boiled fluid and its vapor within a boiler. The resolution of the problem allowed us to show the evolution of the broth and the level of the liquid.

Validity Domains of Beams Behavioural Models: Efficiency and Reduction with Artificial Neural Networks

In a particular case of behavioural model reduction by ANNs, a validity domain shortening has been found. In mechanics, as in other domains, the notion of validity domain allows the engineer to choose a valid model for a particular analysis or simulation. In the study of mechanical behaviour for a cantilever beam (using linear and non-linear models), Multi-Layer Perceptron (MLP) Backpropagation (BP) networks have been applied as model reduction technique. This reduced model is constructed to be more efficient than the non-reduced model. Within a less extended domain, the ANN reduced model estimates correctly the non-linear response, with a lower computational cost. It has been found that the neural network model is not able to approximate the linear behaviour while it does approximate the non-linear behaviour very well. The details of the case are provided with an example of the cantilever beam behaviour modelling.

Influence of Hydrocarbons on Plant Cell Ultrastructure and Main Metabolic Enzymes

Influence of octane and benzene on plant cell ultrastructure and enzymes of basic metabolism, such as nitrogen assimilation and energy generation have been studied. Different plants: perennial ryegrass (Lolium perenne) and alfalfa (Medicago sativa); crops- maize (Zea mays L.) and bean (Phaseolus vulgaris); shrubs – privet (Ligustrum sempervirens) and trifoliate orange (Poncirus trifoliate); trees - poplar (Populus deltoides) and white mulberry (Morus alba L.) were exposed to hydrocarbons of different concentrations (1, 10 and 100 mM). Destructive changes in bean and maize leaves cells ultrastructure under the influence of benzene vapour were revealed at the level of photosynthetic and energy generation subcellular organells. Different deviations at the level of subcellular organelles structure and distribution were observed in alfalfa and ryegrass root cells under the influence of benzene and octane, absorbed through roots. The level of destructive changes is concentration dependent. Benzene at low 1 and 10 mM concentration caused the increase in glutamate dehydrogenase (GDH) activity in maize roots and leaves and in poplar and mulberry shoots, though to higher extent in case of lower, 1mM concentration. The induction was more intensive in plant roots. The highest tested 100mM concentration of benzene was inhibitory to the enzyme in all plants. Octane caused induction of GDH in all grassy plants at all tested concentrations; however the rate of induction decreased parallel to increase of the hydrocarbon concentration. Octane at concentration 1 mM caused induction of GDH in privet, trifoliate and white mulberry shoots. The highest, 100mM octane was characterized by inhibitory effect to GDH activity in all plants. Octane had inductive effect on malate dehydrogenase in almost all plants and tested concentrations, indicating the intensification of Trycarboxylic Acid Cycle. The data could be suggested for elaboration of criteria for plant selection for phytoremediation of oil hydrocarbons contaminated soils.

The Effect of Methionine and Acetate Concentrations on Mycophenolic Acid Production by Penicillium bervicompactum MUCL 19011 in Submerged Culture

Mycophenolic acid “MPA" is a secondary metabolite of Penicillium bervicompactum with antibiotic and immunosuppressive properties. In this study, fermentation process was established for production of mycophenolic acid by Penicillium bervicompactum MUCL 19011 in shake flask. The maximum MPA production, product yield and productivity were 1.379 g/L, 18.6 mg/g glucose and 4.9 mg/L.h respectively. Glucose consumption, biomass and MPA production profiles were investigated during fermentation time. It was found that MPA production starts approximately after 180 hours and reaches to a maximum at 280 h. In the next step, the effects of methionine and acetate concentrations on MPA production were evaluated. Maximum MPA production, product yield and productivity (1.763 g/L, 23.8 mg/g glucose and 6.30 mg/L. h respectively) were obtained with using 2.5 g/L methionine in culture medium. Further addition of methionine had not more positive effect on MPA production. Finally, results showed that the addition of acetate to the culture medium had not any observable effect on MPA production

Ageing Deterioration of Silicone Rubber Polymer Insulator under Salt Water Dip Wheel Test

This paper presents the experimental results of silicone rubber polymer insulators for 22 kV systems under salt water dip wheel test based on IEC 62217. Straight shed silicone rubber polymer insulators having leakage distance 685 mm were tested continuously 30,000 cycles. One test cycle includes 4 positions, energized, de-energized, salt water dip and deenergized, respectively. For one test cycle, each test specimen remains stationary for about 40 second in each position and takes 8 second for rotate to next position. By visual observation, sever surface erosion was observed on the trunk near the energized end of tested specimen. Puncture was observed on the upper shed near the energized end. In addition, decreasing in hydrophobicity and increasing in hardness were measured on tested specimen comparing with new specimen. Furthermore, chemical analysis by ATR-FTIR was conducted in order to elucidate the chemical change of tested specimens comparing with new specimen.

Extractability of Heavy Metals in Green Liquor Dregs using Artificial Sweat and Gastric Fluids

In an assessment of the extractability of metals in green liquor dregs from the chemical recovery circuit of semichemical pulp mill, extractable concentrations of heavy metals in artificial gastric fluid were between 10 (Ni) and 717 (Zn) times higher than those in artificial sweat fluid. Only Al (6.7 mg/kg; d.w.), Ni (1.2 mg/kg; d.w.) and Zn (1.8 mg/kg; d.w.) showed extractability in the artificial sweat fluid, whereas Al (730 mg/kg; d.w.), Ba (770 mg/kg; d.w.) and Zn (1290 mg/kg; d.w.) showed clear extractability in the artificial gastric fluid. As certain heavy metals were clearly soluble in the artificial gastric fluid, the careful handling of this residue is recommended in order to prevent the penetration of green liquor dregs across the human gastrointestinal tract.

Use of Regression Analysis in Determining the Length of Plastic Hinge in Reinforced Concrete Columns

Basic objective of this study is to create a regression analysis method that can estimate the length of a plastic hinge which is an important design parameter, by making use of the outcomes of (lateral load-lateral displacement hysteretic curves) the experimental studies conducted for the reinforced square concrete columns. For this aim, 170 different square reinforced concrete column tests results have been collected from the existing literature. The parameters which are thought affecting the plastic hinge length such as crosssection properties, features of material used, axial loading level, confinement of the column, longitudinal reinforcement bars in the columns etc. have been obtained from these 170 different square reinforced concrete column tests. In the study, when determining the length of plastic hinge, using the experimental test results, a regression analysis have been separately tested and compared with each other. In addition, the outcome of mentioned methods on determination of plastic hinge length of the reinforced concrete columns has been compared to other methods available in the literature.

Study on Rural Landscape Design Method under the Background of the Population Diversification

Population diversification phenomena becomes quite common in villages located in China’s developed coastal area. Based on the analysis of the traditional rural society and its landscape characteristics, and in consideration of diversified landscape requirements due to the population diversification, with dual ideas of heritage and innovation, methods for rural landscape design were explored by taking Duxuao Village in Zhejiang Province of China as an example.

Size Control of Nanoparticles Using a Microfluidic Device

We have developed a microfluidic device system for the continuous producting of nanoparticles, and we have clarified the relationship between the mixing performance of reactors and the particle size. First, we evaluated the mixing performance of reactors by carring out the Villermaux–Dushman reaction and determined the experimental conditions for producing AgCl nanoparticles. Next, we produced AgCl nanoparticles and evaluated the mixing performance and the particle size. We found that as the mixing performance improves the size of produced particles decreases and the particle size distribution becomes sharper. We produced AgCl nanoparticles with a size of 86 nm using the microfluidic device that had the best mixing performance among the three reactors we tested in this study; the coefficient of variation (Cv) of the size distribution of the produced nanoparticles was 26.1%.

Long-Term On-Chip Storage and Release of Liquid Reagents for Diagnostic Lab-on-a-Chip Applications

A new concept for long-term reagent storage for Labon- a-Chip (LoC) devices is described. Here we present a polymer multilayer stack with integrated stick packs for long-term storage of several liquid reagents, which are necessary for many diagnostic applications. Stick packs are widely used in packaging industry for storing solids and liquids for long time. The storage concept fulfills two main requirements: First, a long-term storage of reagents in stick packs without significant losses and interaction with surroundings, second, on demand releasing of liquids, which is realized by pushing a membrane against the stick pack through pneumatic pressure. This concept enables long-term on-chip storage of liquid reagents at room temperature and allows an easy implementation in different LoC devices.

The Role of Immunogenic Adhesin Vibrio alginolyticus 49 k Da to Molecule Expression of Major Histocompatibility Complex on Receptors of Humpback Grouper Cromileptes altivelis

The purpose of research was to know the role of immunogenic protein of 49 kDa from V.alginolyticus which capable to initiate molecule expression of MHC Class II in receptor of Cromileptes altivelis. The method used was in vivo experimental research through testing of immunogenic protein 49 kDa from V.alginolyticus at Cromileptes altivelis (size of 250 - 300 grams) using 3 times booster by injecting an immunogenic protein in a intramuscular manner. Response of expressed MHC molecule was shown using immunocytochemistry method and SEM. Results indicated that adhesin V.alginolyticus 49 kDa which have immunogenic character could trigger expression of MHC class II on receptor of grouper and has been proven by staining using immunocytochemistry and SEM with labeling using antibody anti MHC (anti mouse). This visible expression based on binding between epitopes antigen and antibody anti MHC in the receptor. Using immunocytochemistry, intracellular response of MHC to in vivo induction of immunogenic adhesin from V.alginolyticus was shown.

The Management in Large Emergency Situations – A Best Practise Case Study based on GIS for Management of Evacuation

In most of the cases, natural disasters lead to the necessity of evacuating people. The quality of evacuation management is dramatically improved by the use of information provided by decision support systems, which become indispensable in case of large scale evacuation operations. This paper presents a best practice case study. In November 2007, officers from the Emergency Situations Inspectorate “Crisana" of Bihor County from Romania participated to a cross-border evacuation exercise, when 700 people have been evacuated from Netherlands to Belgium. One of the main objectives of the exercise was the test of four different decision support systems. Afterwards, based on that experience, software system called TEVAC (Trans Border Evacuation) has been developed “in house" by the experts of this institution. This original software system was successfully tested in September 2008, during the deployment of the international exercise EU-HUROMEX 2008, the scenario involving real evacuation of 200 persons from Hungary to Romania. Based on the lessons learned and results, starting from April 2009, the TEVAC software is used by all Emergency Situations Inspectorates all over Romania.

A Comparison between Heterogeneous and Homogeneous Gas Flow Model in Slurry Bubble Column Reactor for Direct Synthesis of DME

In the present study, a heterogeneous and homogeneous gas flow dispersion model for simulation and optimisation of a large-scale catalytic slurry reactor for the direct synthesis of dimethyl ether (DME) from syngas and CO2, using a churn-turbulent regime was developed. In the heterogeneous gas flow model the gas phase was distributed into two bubble phases: small and large, however in the homogeneous one, the gas phase was distributed into only one large bubble phase. The results indicated that the heterogeneous gas flow model was in more agreement with experimental pilot plant data than the homogeneous one.

Performance Prediction of Multi-Agent Based Simulation Applications on the Grid

A major requirement for Grid application developers is ensuring performance and scalability of their applications. Predicting the performance of an application demands understanding its specific features. This paper discusses performance modeling and prediction of multi-agent based simulation (MABS) applications on the Grid. An experiment conducted using a synthetic MABS workload explains the key features to be included in the performance model. The results obtained from the experiment show that the prediction model developed for the synthetic workload can be used as a guideline to understand to estimate the performance characteristics of real world simulation applications.