Effect of Damping on Performance of Magnetostrictive Vibration Energy Harvester

This article presents an analytical model to estimate the harvested power from a Magnetostrictive cantilevered beam with tip excitation. Furthermore, the effects of internal and external damping on harvested power are investigated. The magnetostrictive material in this harvester is Galfenol. In comparison to other popular smart materials like Terfenol-D, Galfenol has higher strength and machinability. In this article, first, a mechanical model of the Euler-Bernoulli beam is employed to calculate the deflection of the harvester. Then, the magneto-mechanical equation of Galfenol is combined with Faraday's law to calculate the generated voltage of the Magnetostrictive cantilevered beam harvester. Finally, the beam model is incorporated in the aforementioned combination. The results show that a 30×8.5×1 mm Galfenol cantilever beam harvester with 80 turn pickup coil can generate up to 3.7 mV and 9 mW. Furthermore, sensitivity analysis made by Response Surface Method (RSM) shows that the harvested power is only sensitive to the internal damping coefficient.

Omni: Data Science Platform for Evaluate Performance of a LoRaWAN Network

Nowadays, physical processes are becoming digitized by the evolution of communication, sensing and storage technologies which promote the development of smart cities. The evolution of this technology has generated multiple challenges related to the generation of big data and the active participation of electronic devices in society. Thus, devices can send information that is captured and processed over large areas, but there is no guarantee that all the obtained data amount will be effectively stored and correctly persisted. Because, depending on the technology which is used, there are parameters that has huge influence on the full delivery of information. This article aims to characterize the project, currently under development, of a platform that based on data science will perform a performance and effectiveness evaluation of an industrial network that implements LoRaWAN technology considering its main parameters configuration relating these parameters to the information loss.

Morphology of Indian Female Athletes of Different Track and Field Events

Participation in games and sports in the contemporary times has become more competing with the developed scientific knowledge, skills and methods, along with the equipment and applied research in the field. In spite of India being a large country having vast resources and potential, its performance in the world of sports on the whole needs sincere attention for better achievements. Beside numerous factors responsible for the dismal performance of a sportsperson, the physique and body composition, including the size, shape and form are known to play a significant role. The present investigation was undertaken to study the specific morphological characteristics of Indian female Track and Field athletes. A total of 300 athletes were randomly selected as sample for the purpose of the study from the six events having 50 athletes in each event including 100m., 400m., Shot Put, Discus Throw, Long Jump and High Jump. The study included body weight, body fat percentage, lean body weight, endomorphy, mesomorphy and ectomorphy as variables. The data were computed statistically by using Mean, Standard Deviation and Analysis of Variance. The post-hoc analysis was conducted where the F-ratio was found to be significant at .05 level. The study concluded that there is a significant difference with regard to the selected variables among the Indian female athletes of different track and field events.

The Effects of Electromagnetic Stirring on Microstructure and Properties of γ-TiAl Based Alloys Fabricated by Selective Laser Melting Technique

The γ-TiAl based Ti-Al-Mn-Nb alloys were fabricated by selective laser melting (SLM) on the TC4 substrate. The microstructures of the alloys were investigated in detail. The results reveal that the alloy without electromagnetic stirring (EMS) consists of γ-TiAl phase with tetragonal structure and α2-Ti3Al phase with hcp structure, while the alloy with applied EMS consists of γ-TiAl, α2-Ti3Al and α-Ti with hcp structure, and the morphological structure of the alloy without EMS which exhibits near lamellar structure and the alloy with EMS shows duplex structure, the alloy without EMS shows some microcracks and pores while they are not observed in the alloy without EMS. The microhardness and wear resistance values decrease with applied EMS.

Leadership Styles in the Hotel Sector and Its Effect on Employees’ Creativity and Organizational Commitment

Leadership is crucial for hotel survival and success. It enables hotels to develop and compete effectively. This research intends to explore the implementation of six leadership styles by frontline hotel managers in four star hotels in Cairo and assess its impact on employees’ creativity and organizational commitment. The leadership patterns considered in this study includes: democratic, autocratic, laissez-faire, transformational, transactional, and ethical leaderships. Questionnaire was used as a research method to gather data. A structured survey was established and distributed on employees in Cairo’s four star hotels. A total of 284 questionnaire forms were returned and usable for statistical analysis. The results of this study identified that transactional and autocratic leadership were the prevalent styles used in four star hotels in Cairo. Two leadership styles proved to have significant high correlation and impact on employees’ creativity and organizational commitment including: transformational and democratic leadership. Besides, laissez-faire leadership was found had a smaller effect on employees’ creativity and ethical leadership had a lesser influence on employees’ commitment. The autocratic leadership had strong negative correlation and significant impact on both dependent variables. This research concludes that frontline hotel managers should adopt transformational and/or democratic leadership style in managing their subordinates.

Development of Sports Nation on the Way of Health Management

The future of the nation is the embodiment of a healthy society. A key segment of government policy is the development of health and a health-oriented environment. As a result, sport as an activator of health is an important area for development. In Hungary, sport is a strategic sector with the aim of developing a sports nation. The function of sport in the global society is multifaceted, which is manifested in both social and economic terms. The economic importance of sport is gaining ground in the world, with implications for Central and Eastern Europe. Smaller states, such as Hungary, cannot ignore the economic effects of exploiting the effects of sport. The relationship between physical activity and health is driven by the health economy towards the nation's economic factor. In our research, we analyzed sport as a national strategy sector and its impact on age groups. By presenting the current state of health behavior, we get an idea of the directions where development opportunities require even more intervention. The foundation of the health of a nation is the young age group, whose shaping of health will shape the future generation. Our research was attended by university students from the Faculty of Health and Sports Sciences who will be experts in the field of health in the future. The other group is the elderly, who are a growing social group due to demographic change and are a key segment of the labor market and consumer society. Our study presents the health behavior of the two age groups, their differences, and similarities. The survey also identifies gaps in the development of a health management strategy that national strategies should take into account.

On-Line Impulse Buying and Cognitive Dissonance: The Moderating Role of the Positive Affective State

The purchase impulsiveness is preceded by a lack of self-control: consequently, it is legitimate to believe that a consumer with a low level of self-control can result in a higher probability of cognitive dissonance. Moreover, the process of purchase is influenced by the pre-existing affective state in a considerable way. With reference to on-line purchases, digital behavior cannot be merely ascribed to the rational sphere, given the speed and ease of transactions and the hedonistic dimension of purchases. To our knowledge, this research is among the first cases of verification of the effect of moderation exerted by the positive affective state in the on-line impulse purchase of products with a high expressive value such as a smartphone on the occurrence of cognitive dissonance. To this aim, a moderation analysis was conducted on a sample of 212 impulsive millennials buyers. Three scales were adopted to measure the constructs of interest: IBTS for impulsivity, PANAS for the affective state, Sweeney for cognitive dissonance. The analysis revealed that positive affective state does not affect the onset of cognitive dissonance.

60 GHz Multi-Sector Antenna Array with Switchable Radiation-Beams for Small Cell 5G Networks

A compact design of multi-sector patch antenna array for 60 GHz applications is presented and discussed in details. The proposed design combines five 1×8 linear patch antenna arrays, referred to as sectors, in a multi-sector configuration. The coaxial-fed radiation elements of the multi-sector array are designed on 0.2 mm Rogers RT5880 dielectrics. The array operates in the frequency range of 58-62 GHz and provides switchable directional/omnidirectional radiation beams with high gain and high directivity characteristics. The designed multi-sector array exhibits good performances and could be used in the fifth generation (5G) cellular networks.

The Influence of Interest, Beliefs, and Identity with Mathematics on Achievement

This study investigated factors that influence mathematics achievement based on a sample of ninth-grade students (N  =  21,444) from the High School Longitudinal Study of 2009 (HSLS09). Key aspects studied included efficacy in mathematics, interest and enjoyment of mathematics, identity with mathematics and future utility beliefs and how these influence mathematics achievement. The predictability of mathematics achievement based on these factors was assessed using correlation coefficients and multiple linear regression. Spearman rank correlations and multiple regression analyses indicated positive and statistically significant relationships between the explanatory variables: mathematics efficacy, identity with mathematics, interest in and future utility beliefs with the response variable, achievement in mathematics.

Agreement between Basal Metabolic Rate Measured by Bioelectrical Impedance Analysis and Estimated by Prediction Equations in Obese Groups

Basal metabolic rate (BMR) is widely used and an accepted measure of energy expenditure. Its principal determinant is body mass. However, this parameter is also correlated with a variety of other factors. The objective of this study is to measure BMR and compare it with the values obtained from predictive equations in adults classified according to their body mass index (BMI) values. 276 adults were included into the scope of this study. Their age, height and weight values were recorded. Five groups were designed based on their BMI values. First group (n = 85) was composed of individuals with BMI values varying between 18.5 and 24.9 kg/m2. Those with BMI values varying from 25.0 to 29.9 kg/m2 constituted Group 2 (n = 90). Individuals with 30.0-34.9 kg/m2, 35.0-39.9 kg/m2, > 40.0 kg/m2 were included in Group 3 (n = 53), 4 (n = 28) and 5 (n = 20), respectively. The most commonly used equations to be compared with the measured BMR values were selected. For this purpose, the values were calculated by the use of four equations to predict BMR values, by name, introduced by Food and Agriculture Organization (FAO)/World Health Organization (WHO)/United Nations University (UNU), Harris and Benedict, Owen and Mifflin. Descriptive statistics, ANOVA, post-Hoc Tukey and Pearson’s correlation tests were performed by a statistical program designed for Windows (SPSS, version 16.0). p values smaller than 0.05 were accepted as statistically significant. Mean ± SD of groups 1, 2, 3, 4 and 5 for measured BMR in kcal were 1440.3 ± 210.0, 1618.8 ± 268.6, 1741.1 ± 345.2, 1853.1 ± 351.2 and 2028.0 ± 412.1, respectively. Upon evaluation of the comparison of means among groups, differences were highly significant between Group 1 and each of the remaining four groups. The values were increasing from Group 2 to Group 5. However, differences between Group 2 and Group 3, Group 3 and Group 4, Group 4 and Group 5 were not statistically significant. These insignificances were lost in predictive equations proposed by Harris and Benedict, FAO/WHO/UNU and Owen. For Mifflin, the insignificance was limited only to Group 4 and Group 5. Upon evaluation of the correlations of measured BMR and the estimated values computed from prediction equations, the lowest correlations between measured BMR and estimated BMR values were observed among the individuals within normal BMI range. The highest correlations were detected in individuals with BMI values varying between 30.0 and 34.9 kg/m2. Correlations between measured BMR values and BMR values calculated by FAO/WHO/UNU as well as Owen were the same and the highest. In all groups, the highest correlations were observed between BMR values calculated from Mifflin and Harris and Benedict equations using age as an additional parameter. In conclusion, the unique resemblance of the FAO/WHO/UNU and Owen equations were pointed out. However, mean values obtained from FAO/WHO/UNU were much closer to the measured BMR values. Besides, the highest correlations were found between BMR calculated from FAO/WHO/UNU and measured BMR. These findings suggested that FAO/WHO/UNU was the most reliable equation, which may be used in conditions when the measured BMR values are not available.

The Effect of Magnetite Particle Size on Methane Production by Fresh and Degassed Anaerobic Sludge

Anaerobic batch experiments were conducted to investigate the effect of magnetite-supplementation (7 mM) on methane production from digested sludge undergoing two different microbial growth phases, namely fresh sludge (exponential growth phase) and degassed sludge (endogenous decay phase). Three different particle sizes were assessed: small (50 - 150 nm), medium (168 – 490 nm) and large (800 nm - 4.5 µm) particles. Results show that, in the case of the fresh sludge, magnetite significantly enhanced the methane production rate (up to 32%) and reduced the lag phase (by 15% - 41%) as compared to the control, regardless of the particle size used. However, the cumulative methane produced at the end of the incubation was comparable in all treatment and control bottles. In the case of the degassed sludge, only the medium-sized magnetite particles increased significantly the methane production rate (12% higher) as compared to the control. Small and large particles had little effect on the methane production rate but did result in an extended lag phase which led to significantly lower cumulative methane production at the end of the incubation period. These results suggest that magnetite produces a clear and positive effect on methane production only when an active and balanced microbial community is present in the anaerobic digester. It is concluded that, (i) the effect of magnetite particle size on increasing the methane production rate and reducing lag phase duration is strongly influenced by the initial metabolic state of the microbial consortium, and (ii) the particle size would positively affect the methane production if it is provided within the nanometer size range.

A Secure Auditing Framework for Load Balancing in Cloud Environment

Security audit is an important aspect or feature to be considered in cloud service customer. It is basically a certification process to audit the controls that deliver the security requirements. Security audits are conducted by trained and qualified staffs that belong to an independent auditing organization. Security audits must be carried as a standard of security controls. Proper check to be made that the cloud user has a proper reporting and logging facilities with the customer's system and hence ensuring appropriate business and operational flow of data through cloud service. We propose a cloud-based secure auditing framework, which enables confided in power to safely store their mystery information on the semi-believed cloud specialist co-ops, and specifically share their mystery information with a wide scope of information recipient, to diminish the key administration intricacy for power proprietors and information collectors. Unique in relation to past cloud-based information framework, data proprietors transfer their mystery information into cloud utilizing static and dynamic evaluating plan. Another propelled determination is, if any information beneficiary needs individual record to download, the information collector will send the solicitation to the expert. The specialist proprietor has the Access Control. At the off probability, the businessman must impart the primary record to the knowledge collector, acknowledge statistics beneficiary solicitation. Once the acknowledgement for the records is over, the recipient downloads the first record and this record shifting time with date and downloading time with date are monitored by the inspector. In addition to deduplication concept, diminished cloud memory area using dynamic document distribution has been proposed.

System for Monitoring Marine Turtles Using Unstructured Supplementary Service Data

The conservation of marine biodiversity keeps ecosystems in balance and ensures the sustainable use of resources. In this context, technological resources have been used for monitoring marine species to allow biologists to obtain data in real-time. There are different mobile applications developed for data collection for monitoring purposes, but these systems are designed to be utilized only on third-generation (3G) phones or smartphones with Internet access and in rural parts of the developing countries, Internet services and smartphones are scarce. Thus, the objective of this work is to develop a system to monitor marine turtles using Unstructured Supplementary Service Data (USSD), which users can access through basic mobile phones. The system aims to improve the data collection mechanism and enhance the effectiveness of current systems in monitoring sea turtles using any type of mobile device without Internet access. The system will be able to report information related to the biological activities of marine turtles. Also, it will be used as a platform to assist marine conservation entities to receive reports of illegal sales of sea turtles. The system can also be utilized as an educational tool for communities, providing knowledge and allowing the inclusion of communities in the process of monitoring marine turtles. Therefore, this work may contribute with information to decision-making and implementation of contingency plans for marine conservation programs.

Optimizing Exposure Parameters in Digital Mammography: A Study in Morocco

Background: Breast cancer is the leading cause of death for women around the world. Screening mammography is the reference examination, due to its sensitivity for detecting small lesions and micro-calcifications. Therefore, it is essential to ensure quality mammographic examinations with the most optimal dose. These conditions depend on the choice of exposure parameters. Clinically, practices must be evaluated in order to determine the most appropriate exposure parameters. Material and Methods: We performed our measurements on a mobile mammography unit (PLANMED Sofie-classic.) in Morocco. A solid dosimeter (AGMS Radcal) and a MTM 100 phantom allow to quantify the delivered dose and the image quality. For image quality assessment, scores are defined by the rate of visible inserts (MTM 100 phantom), obtained and compared for each acquisition. Results: The results show that the parameters of the mammography unit on which we have made our measurements can be improved in order to offer a better compromise between image quality and breast dose. The last one can be reduced up from 13.27% to 22.16%, while preserving comparable image quality.

Analysis of Air-Water Two-Phase Flow in a 3x3 Rod Bundle

This study investigated the void fraction characteristics under low superficial gas velocity (Jg) and low superficial fluid velocity (Jf) conditions in a 3x3 rod bundle geometry. Three arrangements of conductivity probes were set to measure the void fraction at various cross-sectional regions, including rod-gap, sub-channel and rod-wall regions. The experimental tests were performed under the flow conditions of Jg = 0-0.236 m/s and Jf = 0-0.142 m/s, and the time-averaged void fractions were recorded at each flow condition. It was observed that while the superficial gas velocity increases, the small bubbles started to cluster together and become big bubbles. As the superficial fluid velocity increases, the local void fractions of the three test regions will get closer and the bubble distribution will be more uniform across the cross section.

Impact of Welding Wire Nickel Plating Process Parameters on Ni Layer Thickness

The article presents part of research on the development of nickel plated welding wire production technology, whose application will enable the elimination of the flaws of currently manufactured welding wires. The nickel plated welding wire will be distinguished by high quality, because the Ni layer which is deposited electrochemically onto it from acid baths is characterized by very good adhesion to the steel wire surface, while the ductile nickel well deforms plastically in the drawing process and the adhesion of the Ni layer increases in the drawing process due to the occurring process of diffusion between the Ni and the steel. The Ni layer obtained in the proposed technology, despite a smaller thickness than when the wire is coated with copper, is continuous and tight, thus ensuring high corrosion resistance, as well as unsusceptible to scaling, which should provide a product that meets requirements imposed by the market. The product will also reduce, to some extent, the amount of copper brought in to steel through recycling, while the wire coating nickel introduced to the weld in the welding process is expected, to a degree, to favorably influence its mechanical properties. The paper describes the tests of the process of nickel plating of f1.96 mm-diameter wires using various nickel plating baths with different process parameters.

Role of Sequestration of CO2 Due to the Carbonation in Total CO2 Emission Balance in Concrete Life

Calculation of the carbon footprint of cement concrete is a complex process including consideration of the phase of primary life (components and concrete production processes, transportation, construction works, maintenance of concrete structures) and secondary life, including demolition and recycling. Taking into consideration the effect of concrete carbonation can lead to a reduction in the calculated carbon footprint of concrete. In this paper, an example of CO2 balance for small bridge elements made of Portland cement reinforced concrete was done. The results include the effect of carbonation of concrete in a structure and of concrete rubble after demolition. It was shown that important impact of carbonation on the balance is possible only when rubble carbonation is possible. It was related to the fact that only the sequestration potential in the secondary phase of concrete life has significant value.

Corrosion Protection of Structural Steel by Surfactant Containing Reagents

The anti-corrosion performance of fatty acid coated mild steel samples is studied. Samples of structural steel coated with collector reagents deposited from surfactant in ethanol solution and overcoated with an epoxy barrier paint. A quantitative corrosion rate was determined by linear polarization resistance method using biopotentiostat/galvanostat 400. Coating morphology was determined by scanning electronic microscopy. A test for hydrophobic surface of steel by surfactant was done. From the samples, the main component or high content iron was determined by chemical method and other metal contents were determined by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) method. Prior to measuring the corrosion rate, mechanical and chemical treatments were performed to prepare the test specimens. Overcoating the metal samples with epoxy barrier paint after exposing them with surfactant the corrosion rate can be inhibited by 34-35 µm/year.

Performance Analysis of Three Absorption Heat Pump Cycles, Full and Partial Loads Operations

The environmental concerns related to global warming and ozone layer depletion along with the growing worldwide demand for heating and cooling have brought an increasing attention toward ecological and efficient Heating, Ventilation, and Air Conditioning (HVAC) systems. Furthermore, since space heating accounts for a considerable part of the European primary/final energy use, it has been identified as one of the sectors with the most challenging targets in energy use reduction. Heat pumps are commonly considered as a technology able to contribute to the achievement of the targets. Current research focuses on the full load operation and seasonal performance assessment of three gas-driven absorption heat pump cycles. To do this, investigations of the gas-driven air-source ammonia-water absorption heat pump systems for small-scale space heating applications are presented. For each of the presented cycles, both full-load under various temperature conditions and seasonal performances are predicted by means of numerical simulations. It has been considered that small capacity appliances are usually equipped with fixed geometry restrictors, meaning that the solution mass flow rate is driven by the pressure difference across the associated restrictor valve. Results show that gas utilization efficiency (GUE) of the cycles varies between 1.2 and 1.7 for both full and partial loads and vapor exchange (VX) cycle is found to achieve the highest efficiency. It is noticed that, for typical space heating applications, heat pumps operate over a wide range of capacities and thermal lifts. Thus, partially, the novelty introduced in the paper is the investigation based on a seasonal performance approach, following the method prescribed in a recent European standard (EN 12309). The overall result is a modest variation in the seasonal performance for analyzed cycles, from 1.427 (single-effect) to 1.493 (vapor-exchange).

Speaker Recognition Using LIRA Neural Networks

This article contains information from our investigation in the field of voice recognition. For this purpose, we created a voice database that contains different phrases in two languages, English and Spanish, for men and women. As a classifier, the LIRA (Limited Receptive Area) grayscale neural classifier was selected. The LIRA grayscale neural classifier was developed for image recognition tasks and demonstrated good results. Therefore, we decided to develop a recognition system using this classifier for voice recognition. From a specific set of speakers, we can recognize the speaker’s voice. For this purpose, the system uses spectrograms of the voice signals as input to the system, extracts the characteristics and identifies the speaker. The results are described and analyzed in this article. The classifier can be used for speaker identification in security system or smart buildings for different types of intelligent devices.