Abstract: In this investigation, a hypoeutectic AlSi11Cu alloy was printed. This alloy was obtained in powder form with an average particle size of 40 µm. Bars 20 mm in diameter and 100 mm in length were printed with the building direction parallel to the bars' longitudinal direction. The microstructural characterization demonstrated an Al matrix surrounded by a Si network forming a coral-like pattern. The microstructure of the alloy showed a heterogeneous behavior with a mixture of columnar and equiaxed grains. Likewise, the texture indicated that the columnar grains were preferentially oriented towards the building direction, while the equiaxed followed a texture dominated by the cube component. On the other hand, the as-printed material strength showed higher values than those obtained in the same alloy using conventional processes such as casting. In addition, strength and ductility differences were found in the printed material, depending on the measurement direction. The highest values were obtained in the radial direction (565 MPa maximum strength and 4.8% elongation to failure). The lowest values corresponded to the transverse direction (508 MPa maximum strength and 3.2 elongation to failure), which corroborate the material anisotropy.
Abstract: The γ-TiAl based Ti-Al-Mn-Nb alloys were fabricated
by selective laser melting (SLM) on the TC4 substrate. The
microstructures of the alloys were investigated in detail. The results
reveal that the alloy without electromagnetic stirring (EMS) consists
of γ-TiAl phase with tetragonal structure and α2-Ti3Al phase
with hcp structure, while the alloy with applied EMS consists of
γ-TiAl, α2-Ti3Al and α-Ti with hcp structure, and the morphological
structure of the alloy without EMS which exhibits near lamellar
structure and the alloy with EMS shows duplex structure, the alloy
without EMS shows some microcracks and pores while they are not
observed in the alloy without EMS. The microhardness and wear
resistance values decrease with applied EMS.
Abstract: The new progressive method of 3D metal printing SLM (Selective Laser Melting) is increasingly expanded into the normal operation. As a result, greater demands are placed on the surface quality of the parts produced in this way. The article deals with research of selected finishing methods (tumbling, face milling, sandblasting, shot peening and brushing) and their impact on the final surface roughness. The 20 x 20 x 7 mm produced specimens using SLM additive technology on the Renishaw AM400 were subjected to testing of these finishing methods by adjusting various parameters. Surface parameters of roughness Sa, Sz were chosen as the evaluation criteria and profile parameters Ra, Rz were used as additional measurements. Optical measurement of surface roughness was performed on Alicona Infinite Focus 5. An experiment conducted to optimize the surface roughness revealed, as expected, that the best roughness parameters were achieved through a face milling operation. Tumbling is particularly suitable for 3D printing components, as tumbling media are able to reach even complex shapes and, after changing to polishing bodies, achieve a high surface gloss. Surface quality after tumbling depends on the process time. Other methods with satisfactory results are shot peening and tumbling, which should be the focus of further research.
Abstract: Martensitic texture-phase transition in Selective Laser Melting (SLM) Ti-6Al-4V (ELI) alloys was found. Electron Backscatter Diffraction (EBSD) analysis showed the initial cubic beta < 100 > (001) BCC texture. Such kind of texture is observed in BCC metals with flat rolling texture when axis is in the direction of rolling and the texture plane coincides with the plane of rolling. It was found that the texture of the parent BCC beta-phase determined the texture of low-temperature HCP alpha-phase limited the choice of its orientation variants. The {10-12} < -1011 > twinning system in titanium alloys after SLM was determined. Analysis of the oxygen contamination in SLM alloys was done. Comparison of the obtained results with the conventional titanium alloys is also provided.
Abstract: Selective laser melting (SLM), a promising additive manufacturing (AM) technology, has a huge potential in the fabrication of Ti-6Al-4V near-net shape components. However, poor surface finish of the components fabricated from this technology requires secondary machining to achieve the desired accuracy and tolerance. Therefore, a systematic understanding of the machinability of SLM fabricated Ti-6Al-4V components is paramount to improve the productivity and product quality. Considering the significance of machining in SLM fabricated Ti-6Al-4V components, this research aim is to study the influence of build orientation on machinability characteristics by performing low speed orthogonal cutting tests. In addition, the machinability of SLM fabricated Ti-6Al-4V is compared with conventionally produced wrought Ti-6Al-4V to understand the influence of SLM technology on machining. This paper is an attempt to provide evidence to the hypothesis associated that build orientation influences cutting forces, chip formation and surface integrity during orthogonal cutting of SLM Ti-6Al-4V samples. Results obtained from the low speed orthogonal cutting tests highlight the practical importance of microstructure and build orientation on machinability of SLM Ti-6Al-4V.
Abstract: Additive manufacturing (AM) is increasingly crucial in biomedical and aerospace industries. As a recently developed AM technique, selective laser melting (SLM) has become a commercial method for various manufacturing processes. However, the molten pool configuration during SLM of metal powders is a decisive issue for the product quality. It is very important to investigate the heat transfer characteristics during the laser heating process. In this work, the finite element method (FEM) software ANSYS® (work bench module 16.0) was used to predict the unsteady temperature distribution for resolving molten pool dimensions with consideration of temperature-dependent thermal physical properties of TiAl6V4 at different laser powers and scanning speeds. The simulated results of the temperature distributions illustrated that the ratio of laser power to scanning speed can greatly influence the size of molten pool of titanium alloy powder for SLM development.
Abstract: The subject of this paper is the investigation of the
best efficiency design of a compressor diffuser applied in new
lightweight, ultra efficient micro-gas turbine engines for vehicles. The
Computational Fluid Dynamics (CFD) results are obtained utilizing
steady state simulations for a wedge and an ”oval” type pipe diffuser
in an effort to identify the beneficial effects of the pipe diffuser
design. The basic flow features are presented with particular focus
on the optimization of the pipe diffuser leading to higher efficiencies
for the compressor stage. The optimised pipe diffuser is designed to
exploit the 3D freedom enabled by Selective Laser Melting, hence
purposely involves an investigation of geometric characteristics that
do not follow the traditional diffuser concept.
Abstract: Regardless of the manufacturing process used,
subtractive or additive, material, purpose and application, produced
components are conventionally solid mass with more or less complex
shape depending on the production technology selected. Aspects
such as reducing the weight of components, associated with the low
volume of material required and the almost non-existent material
waste, speed and flexibility of production and, primarily, a high
mechanical strength combined with high structural performance, are
competitive advantages in any industrial sector, from automotive,
molds, aviation, aerospace, construction, pharmaceuticals, medicine
and more recently in human tissue engineering. Such features,
properties and functionalities are attained in metal components
produced using the additive technique of Rapid Prototyping from
metal powders commonly known as Selective Laser Melting (SLM),
with optimized internal topologies and varying densities. In order to
produce components with high strength and high structural and
functional performance, regardless of the type of application, three
different internal topologies were developed and analyzed using
numerical computational tools. The developed topologies were
numerically submitted to mechanical compression and four point
bending testing. Finite Element Analysis results demonstrate how
different internal topologies can contribute to improve mechanical
properties, even with a high degree of porosity relatively to fully
dense components. Results are very promising not only from the
point of view of mechanical resistance, but especially through the
achievement of considerable variation in density without loss of
structural and functional high performance.