A Classification Scheme for Game Input and Output

Computer game industry has experienced exponential growth in recent years. A game is a recreational activity involving one or more players. Game input is information such as data, commands, etc., which is passed to the game system at run time from an external source. Conversely, game outputs are information which are generated by the game system and passed to an external target, but which is not used internally by the game. This paper identifies a new classification scheme for game input and output, which is based on player-s input and output. Using this, relationship table for game input classifier and output classifier is developed.

Visualized Characterization of Molecular Mobility for Water Species in Foods

Six parameters, the effective diffusivity (De), activation energy of De, pre-exponential factor of De, amount (ASOW) of self-organized water species, and amplitude (α) of the forced oscillation of the molecular mobility (1/tC) derived from the forced cyclic temperature change operation, were characterized by using six typical foods, squid, sardines, scallops, salmon, beef, and pork, as a function of the correlation time (tC) of the water molecule-s proton retained in the foods. Each of the six parameters was clearly divided into the water species A1 and A2 at a specified value of tC =10-8s (=CtC), indicating an anomalous change in the physicochemical nature of the water species at the CtC. The forced oscillation of 1/tC clearly demonstrated a characteristic mode depending on the food shown as a three dimensional map associated with 1/tC, the amount of self-organized water, and tC.

Efficient Mean Shift Clustering Using Exponential Integral Kernels

This paper presents a highly efficient algorithm for detecting and tracking humans and objects in video surveillance sequences. Mean shift clustering is applied on backgrounddifferenced image sequences. For efficiency, all calculations are performed on integral images. Novel corresponding exponential integral kernels are introduced to allow the application of nonuniform kernels for clustering, which dramatically increases robustness without giving up the efficiency of the integral data structures. Experimental results demonstrating the power of this approach are presented.

A Comparative Study on the Financial Characteristics for Development Methods of Urban Development Project - Focusing on Multi-level Replotting Method -

The purpose of this study is comparing and analysing of the financial characteristics for development methods of the urban development project in the established area, focusing on the multi-level replotting. Analysis showed that the type of the lowest expenditure was 'combination type of group-land and multi-level replotting' and the type of the highest profitability was 'multi-level replotting type'. But 'multi-level replotting type' has still risk of amount of cost for the additional architecture. In addition, we subdivided standard amount for liquidation of replotting and analysed income-expenditure flow. Analysis showed that both of 'multi-level replotting type' and 'combination type of group-land and multi-level replotting' improved profitability of project and property change ratio. However, when the standard was under a certain amount, amount of original property for the replotting was increased exponentially, and profitability of project.

On Generalized Exponential Fuzzy Entropy

In the present communication, the existing measures of fuzzy entropy are reviewed. A generalized parametric exponential fuzzy entropy is defined.Our study of the four essential and some other properties of the proposed measure, clearly establishes the validity of the measure as an entropy.

A Comparative Study of Various Tone Mapping Methods

In the recent years, high dynamic range imaging has gain popularity with the advancement in digital photography. In this contribution we present a subjective evaluation of various tone production and tone mapping techniques by a number of participants. Firstly, standard HDR images were used and the participants were asked to rate them based on a given rating scheme. After that, the participant was asked to rate HDR image generated using linear and nonlinear combination approach of multiple exposure images. The experimental results showed that linearly generated HDR images have better visualization than the nonlinear combined ones. In addition, Reinhard et al. and the exponential tone mapping operators have shown better results compared to logarithmic and the Garrett et al. tone mapping operators.

A Variable Structure MRAC for a Class of MIMO Systems

A Variable Structure Model Reference Adaptive Controller using state variables is proposed for a class of multi input-multi output systems. Adaptation law is of variable structure type and switching functions is designed based on stability requirements. Global exponential stability is proved based on Lyapunov criterion. Transient behavior is analyzed using sliding mode control and shows perfect model following at a finite time.

An Efficient Method for Load−Flow Solution of Radial Distribution Networks

This paper reports a new and accurate method for load-flow solution of radial distribution networks with minimum data preparation. The node and branch numbering need not to be sequential like other available methods. The proposed method does not need sending-node, receiving-node and branch numbers if these are sequential. The proposed method uses the simple equation to compute the voltage magnitude and has the capability to handle composite load modelling. The proposed method uses the set of nodes of feeder, lateral(s) and sub lateral(s). The effectiveness of the proposed method is compared with other methods using two examples. The detailed load-flow results for different kind of load-modellings are also presented.

Confidence Intervals for Double Exponential Distribution: A Simulation Approach

The double exponential model (DEM), or Laplace distribution, is used in various disciplines. However, there are issues related to the construction of confidence intervals (CI), when using the distribution.In this paper, the properties of DEM are considered with intention of constructing CI based on simulated data. The analysis of pivotal equations for the models here in comparisons with pivotal equations for normal distribution are performed, and the results obtained from simulation data are presented.

Framework for Spare Inventory Management

Spare parts inventory management is one of the major areas of inventory research. Analysis of recent literature showed that an approach integrating spare parts classification, demand forecasting, and stock control policies is essential; however, adapting this integrated approach is limited. This work presents an integrated framework for spare part inventory management and an Excel based application developed for the implementation of the proposed framework. A multi-criteria analysis has been used for spare classification. Forecasting of spare parts- intermittent demand has been incorporated into the application using three different forecasting models; namely, normal distribution, exponential smoothing, and Croston method. The application is also capable of running with different inventory control policies. To illustrate the performance of the proposed framework and the developed application; the framework is applied to different items at a service organization. The results achieved are presented and possible areas for future work are highlighted.

Exponential Particle Swarm Optimization Approach for Improving Data Clustering

In this paper we use exponential particle swarm optimization (EPSO) to cluster data. Then we compare between (EPSO) clustering algorithm which depends on exponential variation for the inertia weight and particle swarm optimization (PSO) clustering algorithm which depends on linear inertia weight. This comparison is evaluated on five data sets. The experimental results show that EPSO clustering algorithm increases the possibility to find the optimal positions as it decrease the number of failure. Also show that (EPSO) clustering algorithm has a smaller quantization error than (PSO) clustering algorithm, i.e. (EPSO) clustering algorithm more accurate than (PSO) clustering algorithm.

The Giant Component in a Random Subgraph of a Weak Expander

In this paper, we investigate the appearance of the giant component in random subgraphs G(p) of a given large finite graph family Gn = (Vn, En) in which each edge is present independently with probability p. We show that if the graph Gn satisfies a weak isoperimetric inequality and has bounded degree, then the probability p under which G(p) has a giant component of linear order with some constant probability is bounded away from zero and one. In addition, we prove the probability of abnormally large order of the giant component decays exponentially. When a contact graph is modeled as Gn, our result is of special interest in the study of the spread of infectious diseases or the identification of community in various social networks.

Systems with Queueing and their Simulation

In the queueing theory, it is assumed that customer arrivals correspond to a Poisson process and service time has the exponential distribution. Using these assumptions, the behaviour of the queueing system can be described by means of Markov chains and it is possible to derive the characteristics of the system. In the paper, these theoretical approaches are presented on several types of systems and it is also shown how to compute the characteristics in a situation when these assumptions are not satisfied

Stochastic Comparisons of Heterogeneous Samples with Homogeneous Exponential Samples

In the present communication, stochastic comparison of a series (parallel) system having heterogeneous components with random lifetimes and series (parallel) system having homogeneous exponential components with random lifetimes has been studied. Further, conditions under which such a comparison is possible has been established.

Analysis of Linked in Series Servers with Blocking, Priority Feedback Service and Threshold Policy

The use of buffer thresholds, blocking and adequate service strategies are well-known techniques for computer networks traffic congestion control. This motivates the study of series queues with blocking, feedback (service under Head of Line (HoL) priority discipline) and finite capacity buffers with thresholds. In this paper, the external traffic is modelled using the Poisson process and the service times have been modelled using the exponential distribution. We consider a three-station network with two finite buffers, for which a set of thresholds (tm1 and tm2) is defined. This computer network behaves as follows. A task, which finishes its service at station B, gets sent back to station A for re-processing with probability o. When the number of tasks in the second buffer exceeds a threshold tm2 and the number of task in the first buffer is less than tm1, the fed back task is served under HoL priority discipline. In opposite case, for fed backed tasks, “no two priority services in succession" procedure (preventing a possible overflow in the first buffer) is applied. Using an open Markovian queuing schema with blocking, priority feedback service and thresholds, a closed form cost-effective analytical solution is obtained. The model of servers linked in series is very accurate. It is derived directly from a twodimensional state graph and a set of steady-state equations, followed by calculations of main measures of effectiveness. Consequently, efficient expressions of the low computational cost are determined. Based on numerical experiments and collected results we conclude that the proposed model with blocking, feedback and thresholds can provide accurate performance estimates of linked in series networks.

Performance Evaluation of Music and Minimum Norm Eigenvector Algorithms in Resolving Noisy Multiexponential Signals

Eigenvector methods are gaining increasing acceptance in the area of spectrum estimation. This paper presents a successful attempt at testing and evaluating the performance of two of the most popular types of subspace techniques in determining the parameters of multiexponential signals with real decay constants buried in noise. In particular, MUSIC (Multiple Signal Classification) and minimum-norm techniques are examined. It is shown that these methods perform almost equally well on multiexponential signals with MUSIC displaying better defined peaks.

Fingerprint Compression Using Contourlet Transform and Multistage Vector Quantization

This paper presents a new fingerprint coding technique based on contourlet transform and multistage vector quantization. Wavelets have shown their ability in representing natural images that contain smooth areas separated with edges. However, wavelets cannot efficiently take advantage of the fact that the edges usually found in fingerprints are smooth curves. This issue is addressed by directional transforms, known as contourlets, which have the property of preserving edges. The contourlet transform is a new extension to the wavelet transform in two dimensions using nonseparable and directional filter banks. The computation and storage requirements are the major difficulty in implementing a vector quantizer. In the full-search algorithm, the computation and storage complexity is an exponential function of the number of bits used in quantizing each frame of spectral information. The storage requirement in multistage vector quantization is less when compared to full search vector quantization. The coefficients of contourlet transform are quantized by multistage vector quantization. The quantized coefficients are encoded by Huffman coding. The results obtained are tabulated and compared with the existing wavelet based ones.

Moment Generating Functions of Observed Gaps between Hypopnea Using Saddlepoint Approximations

Saddlepoint approximations is one of the tools to obtain an expressions for densities and distribution functions. We approximate the densities of the observed gaps between the hypopnea events using the Huzurbazar saddlepoint approximation. We demonstrate the density of a maximum likelihood estimator in exponential families.

Existence and Stability Analysis of Discrete-time Fuzzy BAM Neural Networks with Delays and Impulses

In this paper, the discrete-time fuzzy BAM neural network with delays and impulses is studied. Sufficient conditions are obtained for the existence and global stability of a unique equilibrium of this class of fuzzy BAM neural networks with Lipschitzian activation functions without assuming their boundedness, monotonicity or differentiability and subjected to impulsive state displacements at fixed instants of time. Some numerical examples are given to demonstrate the effectiveness of the obtained results.

A Modular On-line Profit Sharing Approach in Multiagent Domains

How to coordinate the behaviors of the agents through learning is a challenging problem within multi-agent domains. Because of its complexity, recent work has focused on how coordinated strategies can be learned. Here we are interested in using reinforcement learning techniques to learn the coordinated actions of a group of agents, without requiring explicit communication among them. However, traditional reinforcement learning methods are based on the assumption that the environment can be modeled as Markov Decision Process, which usually cannot be satisfied when multiple agents coexist in the same environment. Moreover, to effectively coordinate each agent-s behavior so as to achieve the goal, it-s necessary to augment the state of each agent with the information about other existing agents. Whereas, as the number of agents in a multiagent environment increases, the state space of each agent grows exponentially, which will cause the combinational explosion problem. Profit sharing is one of the reinforcement learning methods that allow agents to learn effective behaviors from their experiences even within non-Markovian environments. In this paper, to remedy the drawback of the original profit sharing approach that needs much memory to store each state-action pair during the learning process, we firstly address a kind of on-line rational profit sharing algorithm. Then, we integrate the advantages of modular learning architecture with on-line rational profit sharing algorithm, and propose a new modular reinforcement learning model. The effectiveness of the technique is demonstrated using the pursuit problem.