A Learning-Community Recommendation Approach for Web-Based Cooperative Learning

Cooperative learning has been defined as learners working together as a team to solve a problem to complete a task or to accomplish a common goal, which emphasizes the importance of interactions among members to promote the whole learning performance. With the popularity of society networks, cooperative learning is no longer limited to traditional classroom teaching activities. Since society networks facilitate to organize online learners, to establish common shared visions, and to advance learning interaction, the online community and online learning community have triggered the establishment of web-based societies. Numerous research literatures have indicated that the collaborative learning community is a critical issue to enhance learning performance. Hence, this paper proposes a learning community recommendation approach to facilitate that a learner joins the appropriate learning communities, which is based on k-nearest neighbor (kNN) classification. To demonstrate the viability of the proposed approach, the proposed approach is implemented for 117 students to recommend learning communities. The experimental results indicate that the proposed approach can effectively recommend appropriate learning communities for learners.

Preparation and Characterization of M. × Piperita L. Oil Based Gel Formulation

The essential oil of M. × piperita L. was formulated into a topical gel. The prepared gel was characterized for its pH, viscosity, spreadiblity, consistency and extrudiblity, while its stability was evaluated under different temperature conditions. The prepared M. × piperita oil gel was clear and transparent. The pH value of developed gel was 6.6, while its viscosity was 1200 cP. Spreadability and consistency of the M. × piperita oil gel was 10.7 g.cm/sec and 7 mm, respectively. The prepared gel showed good extrudiblity. During the stability studies, no significant change in pH and viscosity as a function of time for gel was observed, indicating stability of prepared formulation. The gel developed in this study is expected to forward the usage of M. × piperita essential towards commercial application.

Mechanical Modeling Issues in Optimization of Dynamic Behavior of RF MEMS Switches

This paper details few mechanical modeling and design issues of RF MEMS switches. We concentrate on an electrostatically actuated broad side series switch; surface micromachined with a crab leg membrane. The same results are extended to any complex structure. With available experimental data and fabrication results, we present the variation in dynamic performance and compliance of the switch with reference to few design issues, which we find are critical in deciding the dynamic behavior of the switch, without compromise on the RF characteristics. The optimization of pull in voltage, transient time and resonant frequency with regard to these critical design parameters are also presented.

Study of a BVAR(p) Process Applied to U.S. Commodity Market Data

The paper presents an applied study of a multivariate AR(p) process fitted to daily data from U.S. commodity futures markets with the use of Bayesian statistics. In the first part a detailed description of the methods used is given. In the second part two BVAR models are chosen one with assumption of lognormal, the second with normal distribution of prices conditioned on the parameters. For a comparison two simple benchmark models are chosen that are commonly used in todays Financial Mathematics. The article compares the quality of predictions of all the models, tries to find an adequate rate of forgetting of information and questions the validity of Efficient Market Hypothesis in the semi-strong form.

A Blind SLM Scheme for Reduction of PAPR in OFDM Systems

In this paper we propose a blind algorithm for peakto- average power ratio (PAPR) reduction in OFDM systems, based on selected mapping (SLM) algorithm as a distortionless method. The main drawback of the conventional SLM technique is the need for transmission of several side information bits, for each data block, which results in loss in data rate transmission. In the proposed method some special number of carriers in the OFDM frame is reserved to be rotated with one of the possible phases according to the number of phase sequence blocks in SLM algorithm. Reserving some limited number of carriers wont effect the reduction in PAPR of OFDM signal. Simulation results show using ML criteria at the receiver will lead to the same system-performance as the conventional SLM algorithm, while there is no need to send any side information to the receiver.

Utilization of EAF Reducing Slag from Stainless Steelmaking Process as a Sorbent for CO2

In this study, an experimental investigation was carried out to fix CO2 into the electronic arc furnace (EAF) reducing slag from stainless steelmaking process under wet grinding. The slag was ground by the vibrating ball mill with the CO2 and pure water. The reaction behavior was monitored with constant pressure method, and the change of CO2 volume in the experimental system with grinding time was measured. It was found that the CO2 absorption occurred as soon as the grinding started. The CO2 absorption under wet grinding was significantly larger than that under dry grinding. Generally, the amount of CO2 absorption increased as the amount of water, the amount of slag, the diameter of alumina ball and the initial pressure of CO2 increased. However, the initial absorption rate was scarcely influenced by the experimental conditions except for the initial CO2 pressure. According to this research, the CO2 reacted with the CaO inside the slag to form CaCO3.

The Ethics of Dissent: The Case of David Kelly

In this paper, we rely on the story of the late British weapons inspector David Kelly to illustrate how sensemaking can inform the study of the ethics of suppression of dissent. Using archival data, we reconstruct Dr. Kelly-s key responsibilities as a weapons inspector and government employee. We begin by clarifying the concept of dissent and how it is a useful organizational process. We identify the various ways that dissent has been discussed in the organizational literature and reconsider the process of sensemaking. We conclude that suppression of opinions that deviate from the majority is part of the identity maintenance of the sensemaking process. We illustrate the prevention of dissent in organizations consists of a set of unsatisfactory trade-offs.

A Direct Down-conversion Receiver for Low-power Wireless Sensor Networks

A direct downconversion receiver implemented in 0.13 μm 1P8M process is presented. The circuit is formed by a single-end LNA, an active balun for conversion into balanced mode, a quadrature double-balanced passive switch mixer and a quadrature voltage-controlled oscillator. The receiver operates in the 2.4 GHz ISM band and complies with IEEE 802.15.4 (ZigBee) specifications. The circuit exhibits a very low noise figure of only 2.27 dB and dissipates only 14.6 mW with a 1.2 V supply voltage and is hence suitable for low-power applications.

A Fragile Watermarking Scheme for Color Image Authentication

In this paper, a fragile watermarking scheme is proposed for color image specified object-s authentication. The color image is first transformed from RGB to YST color space, suitable for watermarking the color media. The T channel corresponds to the chrominance component of a color image andYS ÔèÑ T , therefore selected for embedding the watermark. The T channel is first divided into 2×2 non-overlapping blocks and the two LSBs are set to zero. The object that is to be authenticated is also divided into 2×2 nonoverlapping blocks and each block-s intensity mean is computed followed by eight bit encoding. The generated watermark is then embedded into T channel randomly selected 2×2 block-s LSBs using 2D-Torus Automorphism. Selection of block size is paramount for exact localization and recovery of work. The proposed scheme is blind, efficient and secure with ability to detect and locate even minor tampering applied to the image with full recovery of original work. The quality of watermarked media is quite high both subjectively and objectively. The technique is suitable for class of images with format such as gif, tif or bitmap.

Silicone on Blending Vegetal Petrochemical Based Polyurethane

Polyurethane foam (PUF) is formed by a chemical reaction of polyol and isocyanate. The aim is to understand the impact of Silicone on synthesizing polyurethane in differentiate volume of molding. The method used was one step process, which is simultaneously caried out a blending polyol (petroleum polyol and soybean polyol), a TDI (2,4):MDI (4,4-) (80:20), a distilled water, and a silicone. The properties of the material were measured via a number of parameters, which are polymer density, compressive strength, and cellular structures. It is found that density of polyurethane using silicone with volume of molding either 250 ml or 500 ml is lower than without using silicone.

Globally Convergent Edge-preserving Reconstruction with Contour-line Smoothing

The standard approach to image reconstruction is to stabilize the problem by including an edge-preserving roughness penalty in addition to faithfulness to the data. However, this methodology produces noisy object boundaries and creates a staircase effect. The existing attempts to favor the formation of smooth contour lines take the edge field explicitly into account; they either are computationally expensive or produce disappointing results. In this paper, we propose to incorporate the smoothness of the edge field in an implicit way by means of an additional penalty term defined in the wavelet domain. We also derive an efficient half-quadratic algorithm to solve the resulting optimization problem, including the case when the data fidelity term is non-quadratic and the cost function is nonconvex. Numerical experiments show that our technique preserves edge sharpness while smoothing contour lines; it produces visually pleasing reconstructions which are quantitatively better than those obtained without wavelet-domain constraints.

Theoretical Isotope Generator: An Alternative towards Isotope Pattern Calculator

A number of mass spectrometry applications are already available as web-based and windows-based systems to calculate isotope pattern and to display the mass spectrum based on the specific molecular formula besides providing necessary information. These applications were evaluated and compared with our new alternative application called Theoretical Isotope Generator (TIG) in terms of its functionality and features provided to prove this new application is working better and performing well. TIG provides extra features than others, complete with several functionality such as drawing, normalizing and zooming the generated graph that convey with the molecular information in a number of formats by providing the details of the calculation and molecules. Thus, any chemist, students, lecturers and researchers from anywhere could use TIG to gain related information on molecules and their relative intensity.

CFD Simulations to Examine Natural Ventilation of a Work Area in a Public Building

Natural ventilation has played an important role for many low energy-building designs. It has been also noticed as a essential subject to persistently bring the fresh cool air from the outside into a building. This study carried out the computational fluid dynamics (CFD)-based simulations to examine the natural ventilation development of a work area in a public building. The simulated results can be useful to better understand the indoor microclimate and the interaction of wind with buildings. Besides, this CFD simulation procedure can serve as an effective analysis tool to characterize the airing performance, and thereby optimize the building ventilation for strengthening the architects, planners and other decision makers on improving the natural ventilation design of public buildings.

A Fuzzy Mixed Integer Multi-Scenario Portfolio Optimization Model

In this paper, we propose a multiple objective optimization model with respect to portfolio selection problem for investors looking forward to diversify their equity investments in a number of equity markets. Based on Markowitz-s M-V model we developed a Fuzzy Mixed Integer Multi-Objective Nonlinear Programming Problem (FMIMONLP) to maximize the investors- future gains on equity markets, reach the optimal proportion of the budget to be invested in different equities. A numerical example with a comprehensive analysis on artificial data from several equity markets is presented in order to illustrate the proposed model and its solution method. The model performed well compared with the deterministic version of the model.

Magnetic Properties Govern the Processes of DNA Replication and the Shortening of the Telomere

This hypothesis shows that the induction and the remanent of magnetic properties govern the mechanism processes of DNA replication and the shortening of the telomere. The solenoid–like formation of each parental DNA strand, which exists at the initial stage of the replication process, enables an electric charge transformation through the strand to produce a magnetic field. The magnetic field, in turn, induces the surrounding medium to form a new (replicated) strand by a remanent magnetisation. Through the remanent [residual] magnetisation process, the replicated strand possesses a similar information pattern to that of the parental strand. In the same process, the remanent amount of magnetisation forms the medium in which it has less of both repetitive and pattern magnetisation than that of the parental strand, therefore the replicated strand shows a shortening in the length of its telomeres.

Performance Evaluation of Prioritized Limited Processor-Sharing System

We propose a novel prioritized limited processor-sharing (PS) rule and a simulation algorithm for the performance evaluation of this rule. The performance measures of practical interest are evaluated using this algorithm. Suppose that there are two classes and that an arriving (class-1 or class-2) request encounters n1 class-1 and n2 class-2 requests (including the arriving one) in a single-server system. According to the proposed rule, class-1 requests individually and simultaneously receive m / (m * n1+ n2) of the service-facility capacity, whereas class-2 requests receive 1 / (m *n1 + n2) of it, if m * n1 + n2 ≤ C. Otherwise (m * n1 + n2 > C), the arriving request will be queued in the corresponding class waiting room or rejected. Here, m (1) denotes the priority ratio, and C ( ∞), the service-facility capacity. In this rule, when a request arrives at [or departs from] the system, the extension [shortening] of the remaining sojourn time of each request receiving service can be calculated using the number of requests of each class and the priority ratio. Employing a simulation program to execute these events and calculations enables us to analyze the performance of the proposed prioritized limited PS rule, which is realistic in a time-sharing system (TSS) with a sufficiently small time slot. Moreover, this simulation algorithm is expanded for the evaluation of the prioritized limited PS system with N  3 priority classes.

Thermodynamic Performance of Regenerative Organic Rankine Cycles

ORC (Organic Rankine Cycle) has potential of reducing consumption of fossil fuels and has many favorable characteristics to exploit low-temperature heat sources. In this work thermodynamic performance of ORC with regeneration is comparatively assessed for various working fluids. Special attention is paid to the effects of system parameters such as the turbine inlet pressure on the characteristics of the system such as net work production, heat input, volumetric flow rate per 1 MW of net work and quality of the working fluid at turbine exit as well as thermal efficiency. Results show that for a given source the thermal efficiency generally increases with increasing of the turbine inlet pressure however has optimal condition for working fluids of low critical pressure such as iso-pentane or n-pentane.

Noise Reduction in Image Sequences using an Effective Fuzzy Algorithm

In this paper, we propose a novel spatiotemporal fuzzy based algorithm for noise filtering of image sequences. Our proposed algorithm uses adaptive weights based on a triangular membership functions. In this algorithm median filter is used to suppress noise. Experimental results show when the images are corrupted by highdensity Salt and Pepper noise, our fuzzy based algorithm for noise filtering of image sequences, are much more effective in suppressing noise and preserving edges than the previously reported algorithms such as [1-7]. Indeed, assigned weights to noisy pixels are very adaptive so that they well make use of correlation of pixels. On the other hand, the motion estimation methods are erroneous and in highdensity noise they may degrade the filter performance. Therefore, our proposed fuzzy algorithm doesn-t need any estimation of motion trajectory. The proposed algorithm admissibly removes noise without having any knowledge of Salt and Pepper noise density.

Concurrency without Locking in Parallel Hash Structures used for Data Processing

Various mechanisms providing mutual exclusion and thread synchronization can be used to support parallel processing within a single computer. Instead of using locks, semaphores, barriers or other traditional approaches in this paper we focus on alternative ways for making better use of modern multithreaded architectures and preparing hash tables for concurrent accesses. Hash structures will be used to demonstrate and compare two entirely different approaches (rule based cooperation and hardware synchronization support) to an efficient parallel implementation using traditional locks. Comparison includes implementation details, performance ranking and scalability issues. We aim at understanding the effects the parallelization schemes have on the execution environment with special focus on the memory system and memory access characteristics.

Validation on 3D Surface Roughness Algorithm for Measuring Roughness of Psoriasis Lesion

Psoriasis is a widespread skin disease affecting up to 2% population with plaque psoriasis accounting to about 80%. It can be identified as a red lesion and for the higher severity the lesion is usually covered with rough scale. Psoriasis Area Severity Index (PASI) scoring is the gold standard method for measuring psoriasis severity. Scaliness is one of PASI parameter that needs to be quantified in PASI scoring. Surface roughness of lesion can be used as a scaliness feature, since existing scale on lesion surface makes the lesion rougher. The dermatologist usually assesses the severity through their tactile sense, therefore direct contact between doctor and patient is required. The problem is the doctor may not assess the lesion objectively. In this paper, a digital image analysis technique is developed to objectively determine the scaliness of the psoriasis lesion and provide the PASI scaliness score. Psoriasis lesion is modelled by a rough surface. The rough surface is created by superimposing a smooth average (curve) surface with a triangular waveform. For roughness determination, a polynomial surface fitting is used to estimate average surface followed by a subtraction between rough and average surface to give elevation surface (surface deviations). Roughness index is calculated by using average roughness equation to the height map matrix. The roughness algorithm has been tested to 444 lesion models. From roughness validation result, only 6 models can not be accepted (percentage error is greater than 10%). These errors occur due the scanned image quality. Roughness algorithm is validated for roughness measurement on abrasive papers at flat surface. The Pearson-s correlation coefficient of grade value (G) of abrasive paper and Ra is -0.9488, its shows there is a strong relation between G and Ra. The algorithm needs to be improved by surface filtering, especially to overcome a problem with noisy data.