Investigation on Some Ergonomics and Psychological Strains of Common Militarism Protective Clothing

Protective clothing limits heat transfer and hampers task performance due to the increased weight. Militarism protective clothing enables humans to operate in adverse environments. In the selection and evaluation of militarism protective clothing attention should be given to heat strain, ergonomic and fit issues next to the actual protection it offers. Fifty Male healthy subjects participated in the study. The subjects were dressed in shorts, T-shirts, socks, sneakers and four deferent kinds of militarism protective clothing such as CS, CSB, CS with NBC protection and CS with NBC- protection added. Ergonomically and psychological strains of every four cloths were investigated on subjects by walking on a treadmill (7km/hour) with a 19.7 kg backpack. As a result of these tests were showed that, the highest heart rate was found wearing the NBC-protection added outfit, the highest temperatures were observed wearing NBCprotection added, followed by respectively CS with NBC protection, CSB and CS and the highest value for thermal comfort (implying worst thermal comfort) was observed wearing NBC-protection added.

EMD-Based Signal Noise Reduction

This paper introduces a new signal denoising based on the Empirical mode decomposition (EMD) framework. The method is a fully data driven approach. Noisy signal is decomposed adaptively into oscillatory components called Intrinsic mode functions (IMFs) by means of a process called sifting. The EMD denoising involves filtering or thresholding each IMF and reconstructs the estimated signal using the processed IMFs. The EMD can be combined with a filtering approach or with nonlinear transformation. In this work the Savitzky-Golay filter and shoftthresholding are investigated. For thresholding, IMF samples are shrinked or scaled below a threshold value. The standard deviation of the noise is estimated for every IMF. The threshold is derived for the Gaussian white noise. The method is tested on simulated and real data and compared with averaging, median and wavelet approaches.

Fifth Order Variable Step Block Backward Differentiation Formulae for Solving Stiff ODEs

The implicit block methods based on the backward differentiation formulae (BDF) for the solution of stiff initial value problems (IVPs) using variable step size is derived. We construct a variable step size block methods which will store all the coefficients of the method with a simplified strategy in controlling the step size with the intention of optimizing the performance in terms of precision and computation time. The strategy involves constant, halving or increasing the step size by 1.9 times the previous step size. Decision of changing the step size is determined by the local truncation error (LTE). Numerical results are provided to support the enhancement of method applied.

An Economical Operation Analysis Optimization Model for Heavy Equipment Selection

Optimizing equipment selection in heavy earthwork operations is a critical key in the success of any construction project. The objective of this research incentive was geared towards developing a computer model to assist contractors and construction managers in estimating the cost of heavy earthwork operations. Economical operation analysis was conducted for an equipment fleet taking into consideration the owning and operating costs involved in earthwork operations. The model is being developed in a Microsoft environment and is capable of being integrated with other estimating and optimization models. In this study, Caterpillar® Performance Handbook [5] was the main resource used to obtain specifications of selected equipment. The implementation of the model shall give optimum selection of equipment fleet not only based on cost effectiveness but also in terms of versatility. To validate the model, a case study of an actual dam construction project was selected to quantify its degree of accuracy.

Performance Analysis of Wireless Ad-Hoc Network Based on EDCA IEEE802.11e

IEEE 802.11e is the enhanced version of the IEEE 802.11 MAC dedicated to provide Quality of Service of wireless network. It supports QoS by the service differentiation and prioritization mechanism. Data traffic receives different priority based on QoS requirements. Fundamentally, applications are divided into four Access Categories (AC). Each AC has its own buffer queue and behaves as an independent backoff entity. Every frame with a specific priority of data traffic is assigned to one of these access categories. IEEE 802.11e EDCA (Enhanced Distributed Channel Access) is designed to enhance the IEEE 802.11 DCF (Distributed Coordination Function) mechanisms by providing a distributed access method that can support service differentiation among different classes of traffic. Performance of IEEE 802.11e MAC layer with different ACs is evaluated to understand the actual benefits deriving from the MAC enhancements.

Commercializing Technology Solutions- Moving from Products to Solutions

The paper outlines the drivers behind the movement from products to solutions in the Hi-Tech Business-to-Business markets. The paper lists out the challenges in enabling the transformation from products to solutions and also attempts to explore strategic and operational recommendations based on the authors- factual experiences with Japanese Hi-tech manufacturing organizations. Organizations in the Hi-Tech Business-to-Business markets are increasingly being compelled to move to a solutions model from the conventional products model. Despite the added complexity of solutions, successful technology commercialization can be achieved by making prudent choices in defining a relevant solutions model, by backing the solution model through appropriate organizational design, and by overhauling the new product development process and supporting infrastructure.

Fracture Characterization of Plain Woven Fabric Glass-Epoxy Composites

Delamination between layers in composite materials is a major structural failure. The delamination resistance is quantified by the critical strain energy release rate (SERR). The present investigation deals with the strain energy release rate of two woven fabric composites. Materials used are made of two types of glass fiber (360 gsm and 600 gsm) of plain weave and epoxy as matrix. The fracture behavior is studied using the mode I, double cantilever beam test and the mode II, end notched flexure test, in order to determine the energy required for the initiation and growth of an artificial crack. The delamination energy of these two materials is compared in order to study the effect of weave and reinforcement on mechanical properties. The fracture mechanism is also analyzed by means of scanning electron microscopy (SEM). It is observed that the plain weave fabric composite with lesser strand width has higher inter laminar fracture properties compared to the plain weave fabric composite with more strand width.

On Best Estimation for Parameter Weibull Distribution

The objective of this study is to introduce estimators to the parameters and survival function for Weibull distribution using three different methods, Maximum Likelihood estimation, Standard Bayes estimation and Modified Bayes estimation. We will then compared the three methods using simulation study to find the best one base on MPE and MSE.

Elastic Failure of Web-Cracked Plate Girder

The presence of a vertical fatigue crack in the web of a plate girder subjected to pure bending influences the bending moment capacity of the girder. The growth of the crack may lead to premature elastic failure due to flange local yielding, flange local buckling, or web local buckling. Approximate expressions for the bending moment capacities corresponding to these failure modes were formulated. Finite element analyses were then used to validate the expressions. The expressions were employed to assess the effects of crack length on the capacity. Neglecting brittle fracture, tension buckling, and ductile failure modes, it was found that typical girders are governed by the capacity associated with flange local yielding as influenced by the crack. Concluding, a possible use of the capacity expressions in girder design was demonstrated.

Tunable Photonic Microwave Bandpass Filter Based on EOPM and VPBS

A tunable photonic microwave bandpass filter with negative coefficient based on an electro-optic phase modulator (EOPM) and a variable polarization beamsplitter (VPBS) is demonstrated. A two-tap microwave bandpass filter with one negative coefficient is presented. The chromatic dispersion and optical coherence are not affected on this filter.

LFC Design of a Deregulated Power System with TCPS Using PSO

In the LFC problem, the interconnections among some areas are the input of disturbances, and therefore, it is important to suppress the disturbances by the coordination of governor systems. In contrast, tie-line power flow control by TCPS located between two areas makes it possible to stabilize the system frequency oscillations positively through interconnection, which is also expected to provide a new ancillary service for the further power systems. Thus, a control strategy using controlling the phase angle of TCPS is proposed for provide active control facility of system frequency in this paper. Also, the optimum adjustment of PID controller's parameters in a robust way under bilateral contracted scenario following the large step load demands and disturbances with and without TCPS are investigated by Particle Swarm Optimization (PSO), that has a strong ability to find the most optimistic results. This newly developed control strategy combines the advantage of PSO and TCPS and has simple stricture that is easy to implement and tune. To demonstrate the effectiveness of the proposed control strategy a three-area restructured power system is considered as a test system under different operating conditions and system nonlinearities. Analysis reveals that the TCPS is quite capable of suppressing the frequency and tie-line power oscillations effectively as compared to that obtained without TCPS for a wide range of plant parameter changes, area load demands and disturbances even in the presence of system nonlinearities.

Dynamic Variational Multiscale LES of Bluff Body Flows on Unstructured Grids

The effects of dynamic subgrid scale (SGS) models are investigated in variational multiscale (VMS) LES simulations of bluff body flows. The spatial discretization is based on a mixed finite element/finite volume formulation on unstructured grids. In the VMS approach used in this work, the separation between the largest and the smallest resolved scales is obtained through a variational projection operator and a finite volume cell agglomeration. The dynamic version of Smagorinsky and WALE SGS models are used to account for the effects of the unresolved scales. In the VMS approach, these effects are only modeled in the smallest resolved scales. The dynamic VMS-LES approach is applied to the simulation of the flow around a circular cylinder at Reynolds numbers 3900 and 20000 and to the flow around a square cylinder at Reynolds numbers 22000 and 175000. It is observed as in previous studies that the dynamic SGS procedure has a smaller impact on the results within the VMS approach than in LES. But improvements are demonstrated for important feature like recirculating part of the flow. The global prediction is improved for a small computational extra cost.

Analysis of Linear Equalizers for Cooperative Multi-User MIMO Based Reporting System

In this paper, we consider a multi user multiple input multiple output (MU-MIMO) based cooperative reporting system for cognitive radio network. In the reporting network, the secondary users forward the primary user data to the common fusion center (FC). The FC is equipped with linear equalizers and an energy detector to make the decision about the spectrum. The primary user data are considered to be a digital video broadcasting - terrestrial (DVB-T) signal. The sensing channel and the reporting channel are assumed to be an additive white Gaussian noise and an independent identically distributed Raleigh fading respectively. We analyzed the detection probability of MU-MIMO system with linear equalizers and arrived at the closed form expression for average detection probability. Also the system performance is investigated under various MIMO scenarios through Monte Carlo simulations.

Extraction of Semantic Digital Signatures from MRI Photos for Image-Identification Purposes

This paper makes an attempt to solve the problem of searching and retrieving of similar MRI photos via Internet services using morphological features which are sourced via the original image. This study is aiming to be considered as an additional tool of searching and retrieve methods. Until now the main way of the searching mechanism is based on the syntactic way using keywords. The technique it proposes aims to serve the new requirements of libraries. One of these is the development of computational tools for the control and preservation of the intellectual property of digital objects, and especially of digital images. For this purpose, this paper proposes the use of a serial number extracted by using a previously tested semantic properties method. This method, with its center being the multi-layers of a set of arithmetic points, assures the following two properties: the uniqueness of the final extracted number and the semantic dependence of this number on the image used as the method-s input. The major advantage of this method is that it can control the authentication of a published image or its partial modification to a reliable degree. Also, it acquires the better of the known Hash functions that the digital signature schemes use and produces alphanumeric strings for cases of authentication checking, and the degree of similarity between an unknown image and an original image.

Edge Detection with the Parametric Filtering Method (Comparison with Canny Method)

In this paper, a new method of image edge-detection and characterization is presented. “Parametric Filtering method" uses a judicious defined filter, which preserves the signal correlation structure as input in the autocorrelation of the output. This leads, showing the evolution of the image correlation structure as well as various distortion measures which quantify the deviation between two zones of the signal (the two Hamming signals) for the protection of an image edge.

A New Heuristic Approach for Optimal Network Reconfiguration in Distribution Systems

This paper presents a novel approach for optimal reconfiguration of radial distribution systems. Optimal reconfiguration involves the selection of the best set of branches to be opened, one each from each loop, such that the resulting radial distribution system gets the desired performance. In this paper an algorithm is proposed based on simple heuristic rules and identified an effective switch status configuration of distribution system for the minimum loss reduction. This proposed algorithm consists of two parts; one is to determine the best switching combinations in all loops with minimum computational effort and the other is simple optimum power loss calculation of the best switching combination found in part one by load flows. To demonstrate the validity of the proposed algorithm, computer simulations are carried out on 33-bus system. The results show that the performance of the proposed method is better than that of the other methods.

Titania and Cu-Titania Composite Layer on Graphite Substrate as Negative Electrode for Li-Ion Battery

This research study the application of the immobilized TiO2 layer and Cu-TiO2 layer on graphite substrate as a negative electrode or anode for Li-ion battery. The titania layer was produced through chemical bath deposition method, meanwhile Cu particles were deposited electrochemically. A material can be used as an electrode as it has capability to intercalates Li ions into its crystal structure. The Li intercalation into TiO2/Graphite and Cu- TiO2/Graphite were analyzed from the changes of its XRD pattern after it was used as electrode during discharging process. The XRD patterns were refined by Le Bail method in order to determine the crystal structure of the prepared materials. A specific capacity and the cycle ability measurement were carried out to study the performance of the prepared materials as negative electrode of the Li-ion battery. The specific capacity was measured during discharging process from fully charged until the cut off voltage. A 300 was used as a load. The result shows that the specific capacity of Li-ion battery with TiO2/Graphite as negative electrode is 230.87 ± 1.70mAh.g-1 which is higher than the specific capacity of Li-ion battery with pure graphite as negative electrode, i.e 140.75 ±0.46mAh.g-1. Meanwhile deposition of Cu onto TiO2 layer does not increase the specific capacity, and the value even lower than the battery with TiO2/Graphite as electrode. The cycle ability of the prepared battery is only two cycles, due to the Li ribbon which was used as cathode became fragile and easily broken.

Theoretical Investigation of the Instantaneous Folding Force during the First Fold Creation in a Square Column

In this paper, a theoretical formula is presented to predict the instantaneous folding force of the first fold creation in a square column under axial loading. Calculations are based on analysis of “Basic Folding Mechanism" introduced by Wierzbicki and Abramowicz. For this purpose, the sum of dissipated energy rate under bending around horizontal and inclined hinge lines and dissipated energy rate under extensional deformations are equated to the work rate of the external force on the structure. Final formula obtained in this research, reasonably predicts the instantaneous folding force of the first fold creation versus folding distance and folding angle and also predicts the instantaneous folding force instead of the average value. Finally, according to the calculated theoretical relation, instantaneous folding force of the first fold creation in a square column was sketched versus folding distance and was compared to the experimental results which showed a good correlation.

A Temporal Synchronization Model for Heterogeneous Data in Distributed Systems

Multimedia distributed systems deal with heterogeneous data, such as texts, images, graphics, video and audio. The specification of temporal relations among different data types and distributed sources is an open research area. This paper proposes a fully distributed synchronization model to be used in multimedia systems. One original aspect of the model is that it avoids the use of a common reference (e.g. wall clock and shared memory). To achieve this, all possible multimedia temporal relations are specified according to their causal dependencies.

Characterization of Corn Cobs from Microwave and Potassium Hydroxide Pretreatment

The complexity of lignocellulosic biomass requires a pretreatment step to improve the yield of fermentable sugars. The efficient pretreatment of corn cobs using microwave and potassium hydroxide and enzymatic hydrolysis was investigated. The objective of this work was to characterize the optimal condition of pretreatment of corn cobs using microwave and potassium hydroxide enhance enzymatic hydrolysis. Corn cobs were submerged in different potassium hydroxide concentration at varies temperature and resident time. The pretreated corn cobs were hydrolyzed to produce the reducing sugar for analysis. The morphology and microstructure of samples were investigated by Thermal gravimetric analysis (TGA, scanning electron microscope (SEM), X-ray diffraction (XRD). The results showed that lignin and hemicellulose were removed by microwave/potassium hydroxide pretreatment. The crystallinity of the pretreated corn cobs was higher than the untreated. This method was compared with autoclave and conventional heating method. The results indicated that microwave-alkali treatment was an efficient way to improve the enzymatic hydrolysis rate by increasing its accessibility hydrolysis enzymes.