Soft Computing based Retrieval System for Medical Applications

With increasing data in medical databases, medical data retrieval is growing in popularity. Some of this analysis including inducing propositional rules from databases using many soft techniques, and then using these rules in an expert system. Diagnostic rules and information on features are extracted from clinical databases on diseases of congenital anomaly. This paper explain the latest soft computing techniques and some of the adaptive techniques encompasses an extensive group of methods that have been applied in the medical domain and that are used for the discovery of data dependencies, importance of features, patterns in sample data, and feature space dimensionality reduction. These approaches pave the way for new and interesting avenues of research in medical imaging and represent an important challenge for researchers.

Phenotypes of B Cells Differ in EBV-positive Burkitt-s lymphoma Derived Cell Lines

Epstein-Barr virus (EBV) is implicated in the pathogenesis of the endemic Burkitt-s lymphoma (BL). The EBVpositive BL-derived cell lines initially maintain the original tumor phenotype of EBV infection (latency I, LatI), but most of them drift toward a lymphoblast phenotype of EBV latency III (LatIII) during in vitro culturing. The aim of the present work was to characterize the B-cell subsets in EBV-positive BL cell lines and to verify whether a particular cell subset correlates with the type of EBV infection. The phenotype analysis of two EBV-negative and eleven EBV-positive (three of LatI and eight of LatIII) BL cell lines was performed by polychromatic flow cytomery, based on expression pattern of CD19, CD10, CD38, CD27, and CD5 markers. Two cell subsets, CD19+CD10+ and CD19+CD10-, were defined in LatIII BL cell lines. In both subsets, the CD27 and CD5 cell surface expression was detected in a proportion of the cells.

Effects of Tap Changing Transformer and Shunt Capacitor on Voltage Stability Enhancement of Transmission Networks

Voltage stability has become an important issue to many power systems around the world due to the weak systems and long line on power system networks. In this paper, MATLAB load flow program is applied to obtain the weak points in the system combined with finding the voltage stability limit. The maximum permissible loading of a system, within the voltage stability limit, is usually determined. The methods for varying tap ratio (using tap changing transformer) and applying different values of shunt capacitor injection to improve the voltage stability within the limit are also provided.

The Experience of Iranian Architecture in Direction of Urban Passages and Forming of Urban Structures to Increase Climatic Comfort

Iran has diverse climates and each have established distinct properties in their area. The extent and intensity of climatic factors effects on the lives of people living in various regions of Iran is so great that it cannot be simply ignored. In a large part of Iran known as the Central Plateau there is no precipitation for more than half of the year and dry weather and scarcity of fresh water pose an ever present problem for the people of these regions while in north of Iran upon the southern shores of the Caspian Sea the people face 80% humidity caused by the sea and 2 meters of annual precipitation. This article tries to review the past experiences of local architecture of Iran-s various regions so that they can be used to reshape and redirect the urban areas and structure of Iran-s current cities to provide environmental comfort by minimum use of fossil fuels.

Non-Invasive Technology on a Classroom Chair for Detection of Emotions Used for the Personalization of Learning Resources

Emotions are related with learning processes and physiological signals can be used to detect them for the personalization of learning resources and to control the pace of instruction. A model of relevant emotions has been developed, where specific combinations of emotions and cognition processes are connected and integrated with the concept of 'flow', in order to improve learning. The cardiac pulse is a reliable signal that carries useful information about the subject-s emotional condition; it is detected using a classroom chair adapted with non invasive EMFi sensor and an acquisition system that generates a ballistocardiogram (BCG), the signal is processed by an algorithm to obtain characteristics that match a specific emotional condition. The complete chair system is presented in this work, along with a framework for the personalization of learning resources.

Effects of TiO2 and Nb2O5 on Hydrogen Desorption of Mg(BH4)2

In this work, effects of catalysts (TiO2, and Nb2O5) were investigated on the hydrogen desorption of Mg(BH4)2. LiBH4 and MgCl2 with 2:1 molar ratio were mixed by using ball milling to prepare Mg(BH4)2. The desorption behaviors were measured by thermo-volumetric apparatus. The hydrogen desorption capacity of the mixed sample milled for 2 h was 4.78 wt% with a 2-step released. The first step occurred at 214 °C and the second step appeared at 374 °C. The addition of 16 wt% Nb2O5 decreased the desorption temperature in the second step about 66 °C and increased the hydrogen desorption capacity to 4.86 wt% hydrogen. The addition of TiO2 also improved the desorption temperature in the second step and the hydrogen desorption capacity. It decreased the desorption temperature about 71°C and showed a high amount of hydrogen, 5.27 wt%, released from the mixed sample. The hydrogen absorption after desorption of Mg(BH4)2 was also studied under 9.5 MPa and 350 °C for 12 h.

A New Method of Combined Classifier Design Based on Fuzzy Neural Network

To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a novel method of designing combined classifier based on fuzzy neural network (FNN) is presented in this paper. The method employs fuzzy neural network classifiers and interclass distance (ICD) to improve recognition reliability. Experimental results show that the proposed combined classifier has high recognition rate with large variation range of SNR (success rates are over 99.9% when SNR is not lower than 5dB).

Application of Mapping and Superimposing Rule for Solution of Parabolic PDE in Porous Medium under Cyclic Loading

This paper presents an analytical method to solve governing consolidation parabolic partial differential equation (PDE) for inelastic porous Medium (soil) with consideration of variation of equation coefficient under cyclic loading. Since under cyclic loads, soil skeleton parameters change, this would introduce variable coefficient of parabolic PDE. Classical theory would not rationalize consolidation phenomenon in such condition. In this research, a method based on time space mapping to a virtual time space along with superimposing rule is employed to solve consolidation of inelastic soils in cyclic condition. Changes of consolidation coefficient applied in solution by modification of loading and unloading duration by introducing virtual time. Mapping function is calculated based on consolidation partial differential equation results. Based on superimposing rule a set of continuous static loads in specified times used instead of cyclic load. A set of laboratory consolidation tests under cyclic load along with numerical calculations were performed in order to verify the presented method. Numerical solution and laboratory tests results showed accuracy of presented method.

On Asymptotic Laws and Transfer Processes Enhancement in Complex Turbulent Flows

The lecture represents significant advances in understanding of the transfer processes mechanism in turbulent separated flows. Based upon experimental data suggesting the governing role of generated local pressure gradient that takes place in the immediate vicinity of the wall in separated flow as a result of intense instantaneous accelerations induced by large-scale vortex flow structures similarity laws for mean velocity and temperature and spectral characteristics and heat and mass transfer law for turbulent separated flows have been developed. These laws are confirmed by available experimental data. The results obtained were employed for analysis of heat and mass transfer in some very complex processes occurring in technological applications such as impinging jets, heat transfer of cylinders in cross flow and in tube banks, packed beds where processes manifest distinct properties which allow them to be classified under turbulent separated flows. Many facts have got an explanation for the first time.

Effects of Adding Different Levels of Anaerobic Fungi on Cellulase Activity of Ostrich Digestive Tract-s Microorganisms under in Vitro Condition

the objective of this study is to measure the levels of cellulas activity of ostrich GI microorganisms, and comparing it with the levels of cellulas activity of rumen-s microorganisms, and also to estimate the probability of increasing enzyme activity with injecting different dosages (30%, 50% and 70%) of pure anaerobic goat rumen fungi. The experiment was conducted in laboratory and under a complete anaerobic condition (in vitro condition). 40 ml of “CaldWell" medium and 1.4g wheat straw were placed in incubator for an hour. The cellulase activity of ostrich microorganisms was compared with other treatments, and then different dosages (30%, 50% and 70%) of pure anaerobic goat rumen fungi were injected to ostrich microorganism-s media. Due to the results, cattle and goat with 2.13 and 2.08 I.U (international units) respectively showed the highest activity and ostrich with 0.91 (I.U) had the lowest cellulose activity (p < 0.05). Injecting 30% and 50% of anaerobic fungi had no significant incensement in enzyme activity, but with injecting 70% of rumen fungi to ostrich microorganisms culture a significant increase was observed 1.48 I.U. (p < 0.05).

CLASS, A New Tool for Nuclear Scenarios: Description and First Application

The presented work is motivated by a french law regarding nuclear waste management. In order to avoid the limitation coming with the usage of the existing scenario codes, as COSI, VISION or FAMILY, the Core Library for Advance Scenario Simulation (CLASS) is being develop. CLASS is an open source tool, which allows any user to simulate an electronuclear scenario. The main CLASS asset, is the possibility to include any type of reactor, even a complitely new concept, through the generation of its ACSII evolution database. In the present article, the CLASS working basis will be presented as well as a simple exemple in order to show his potentiel. In the considered exemple, the effect of the transmutation will be assessed on Minor Actinide Inventory produced by PWR reactors.

A Multiagent System for Distributed Systems Management

The demand for autonomous resource management for distributed systems has increased in recent years. Distributed systems require an efficient and powerful communication mechanism between applications running on different hosts and networks. The use of mobile agent technology to distribute and delegate management tasks promises to overcome the scalability and flexibility limitations of the currently used centralized management approach. This work proposes a multiagent system that adopts mobile agents as a technology for tasks distribution, results collection, and management of resources in large-scale distributed systems. A new mobile agent-based approach for collecting results from distributed system elements is presented. The technique of artificial intelligence based on intelligent agents giving the system a proactive behavior. The presented results are based on a design example of an application operating in a mobile environment.

Assamese Numeral Speech Recognition using Multiple Features and Cooperative LVQ -Architectures

A set of Artificial Neural Network (ANN) based methods for the design of an effective system of speech recognition of numerals of Assamese language captured under varied recording conditions and moods is presented here. The work is related to the formulation of several ANN models configured to use Linear Predictive Code (LPC), Principal Component Analysis (PCA) and other features to tackle mood and gender variations uttering numbers as part of an Automatic Speech Recognition (ASR) system in Assamese. The ANN models are designed using a combination of Self Organizing Map (SOM) and Multi Layer Perceptron (MLP) constituting a Learning Vector Quantization (LVQ) block trained in a cooperative environment to handle male and female speech samples of numerals of Assamese- a language spoken by a sizable population in the North-Eastern part of India. The work provides a comparative evaluation of several such combinations while subjected to handle speech samples with gender based differences captured by a microphone in four different conditions viz. noiseless, noise mixed, stressed and stress-free.

A Multi-Objective Optimization Model to the Integrating Flexible Process Planning And Scheduling Based on Modified Particle Swarm Optimization Algorithm (MPSO)

Process planning and production scheduling play important roles in manufacturing systems. In this paper a multiobjective mixed integer linear programming model is presented for the integrated planning and scheduling of multi-product. The aim is to find a set of high-quality trade-off solutions. This is a combinatorial optimization problem with substantially large solution space, suggesting that it is highly difficult to find the best solutions with the exact search method. To account for it, a PSO-based algorithm is proposed by fully utilizing the capability of the exploration search and fast convergence. To fit the continuous PSO in the discrete modeled problem, a solution representation is used in the algorithm. The numerical experiments have been performed to demonstrate the effectiveness of the proposed algorithm.

The Relevance of Data Warehousing and Data Mining in the Field of Evidence-based Medicine to Support Healthcare Decision Making

Evidence-based medicine is a new direction in modern healthcare. Its task is to prevent, diagnose and medicate diseases using medical evidence. Medical data about a large patient population is analyzed to perform healthcare management and medical research. In order to obtain the best evidence for a given disease, external clinical expertise as well as internal clinical experience must be available to the healthcare practitioners at right time and in the right manner. External evidence-based knowledge can not be applied directly to the patient without adjusting it to the patient-s health condition. We propose a data warehouse based approach as a suitable solution for the integration of external evidence-based data sources into the existing clinical information system and data mining techniques for finding appropriate therapy for a given patient and a given disease. Through integration of data warehousing, OLAP and data mining techniques in the healthcare area, an easy to use decision support platform, which supports decision making process of care givers and clinical managers, is built. We present three case studies, which show, that a clinical data warehouse that facilitates evidence-based medicine is a reliable, powerful and user-friendly platform for strategic decision making, which has a great relevance for the practice and acceptance of evidence-based medicine.

Decision Algorithm for Smart Airbag Deployment Safety Issues

Airbag deployment has been known to be responsible for huge death, incidental injuries and broken bones due to low crash severity and wrong deployment decisions. Therefore, the authorities and industries have been looking for more innovative and intelligent products to be realized for future enhancements in the vehicle safety systems (VSSs). Although the VSSs technologies have advanced considerably, they still face challenges such as how to avoid unnecessary and untimely airbag deployments that can be hazardous and fatal. Currently, most of the existing airbag systems deploy without regard to occupant size and position. As such, this paper will focus on the occupant and crash sensing performances due to frontal collisions for the new breed of so called smart airbag systems. It intends to provide a thorough discussion relating to the occupancy detection, occupant size classification, occupant off-position detection to determine safe distance zone for airbag deployment, crash-severity analysis and airbag decision algorithms via a computer modeling. The proposed system model consists of three main modules namely, occupant sensing, crash severity analysis and decision fusion. The occupant sensing system module utilizes the weight sensor to determine occupancy, classify the occupant size, and determine occupant off-position condition to compute safe distance for airbag deployment. The crash severity analysis module is used to generate relevant information pertinent to airbag deployment decision. Outputs from these two modules are fused to the decision module for correct and efficient airbag deployment action. Computer modeling work is carried out using Simulink, Stateflow, SimMechanics and Virtual Reality toolboxes.

How Learning Efficiency Affects Job Performance Effectiveness

The purpose of this research was to study the influence of learning efficiency on local accountants’ job performance effectiveness. This paper drew upon the survey data collected from 335 local accountants survey conducted at Nakhon Ratchasima province, Thailand. The statistics utilized in this paper included percentage, mean, standard deviation, and regression analysis. The findings revealed that the majority of samples were between 31-40 years old, married, held an undergraduate degree, and had an average income between 10,000-15,000 baht. The majority of respondents had less than five years of accounting experience and worked for local administrations. The overall learning efficiency score was in the highest level while the local accountants’ job performance effectiveness score was also in the high level. The hypothesis testing’s result disclosed that learning efficiency factors which were knowledge, Skill, and Attitude had an influence on local accountants’ job the performance effectiveness.

Effect of Gibberellic Acid and 2,4- Dichlorophenoxyacetic Acid on Fruit Development and Fruit Quality of Wax Apple

This study was conducted to evaluate the effects of gibberellic acid and 2,4- dichlorophenoxyacetic acid on flower number, fruit growth and fruit quality of wax apple. GA3 and 2,4-D were applied at small bud and petal fall stage. Number of flower, fruit set, fruit drop, fruit crack, fruit growth and fruit quality were recorded. Results indicated that spraying with 10 ppm GA3 had the best results in number of flower. GA3 spray at 30 ppm gave the faster rate of fruit growth than the other treatments. Fruit set, fruit size as well as fruit weight markedly improved by spraying 30 ppm GA3, followed by 10 ppm GA3 compared to untreated control. Moreover, spray GA3 at 30 ppm was the most effective and increased total soluble solids, reduced titratable acidity and fruit drop. On the other hand, it was noticed that with 10 ppm 2,4-D application also enhanced the fruit growth rate, improved physiological and biochemical characters of fruit compared to untreated control. It was concluded that both GA3 and 2,4-D spray have positive effects on fruit development, reduced fruit drop, fruit crack and improved fruit quality of wax apple under field conditions.

Study of Compost Maturity during Humification Process using UV-Spectroscopy

The increments of aromatic structures are widely used to monitor the degree of humification. Compost derived from mix manures mixed with agricultural wastes was studied. The compost collected at day 0, 7, 14, 21, 28, 35, 49, 77, 91, 105, and 119 was divided into 3 stages, initial stage at day 0, thermophilic stage during day 1-48, and mature stage during day 49-119. The change of highest absorptions at wavelength range between 210-235 nm during day 0- 49 implied that small molecules such as nitrates and carboxylic occurred faster than the aromatic molecules that were found at wavelength around 280 nm. The ratio of electron-transfer band at wavelength 253 nm by the benzonoid band at wavelength 230 nm (E253/E230) also gradually increased during the fermenting period indicating the presence of O-containing functional groups. This was in agreement with the shift change from aliphatic to aromatic structures as shown by the relationship with C/N and H/C ratios (r = - 0.631 and -0.717, p< 0.05) since both were decreasing. Although the amounts of humic acid (HA) were not different much during the humification process, the UV spectral deconvolution showed better qualitative characteristics to help in determining the compost quality. From this study, the compost should be used at day 49 and should not be kept longer than 3 months otherwise the quality of HA would decline regardless of the amounts of HA that might be rising. This implied that other processes, such as mineralization had an influence on the humification process changing HA-s structure and its qualities.

Efficient Real-time Remote Data Propagation Mechanism for a Component-Based Approach to Distributed Manufacturing

Manufacturing Industries face a crucial change as products and processes are required to, easily and efficiently, be reconfigurable and reusable. In order to stay competitive and flexible, situations also demand distribution of enterprises globally, which requires implementation of efficient communication strategies. A prototype system called the “Broadcaster" has been developed with an assumption that the control environment description has been engineered using the Component-based system paradigm. This prototype distributes information to a number of globally distributed partners via an adoption of the circular-based data processing mechanism. The work highlighted in this paper includes the implementation of this mechanism in the domain of the manufacturing industry. The proposed solution enables real-time remote propagation of machine information to a number of distributed supply chain client resources such as a HMI, VRML-based 3D views and remote client instances regardless of their distribution nature and/ or their mechanisms. This approach is presented together with a set of evaluation results. Authors- main concentration surrounds the reliability and the performance metric of the adopted approach. Performance evaluation is carried out in terms of the response times taken to process the data in this domain and compared with an alternative data processing implementation such as the linear queue mechanism. Based on the evaluation results obtained, authors justify the benefits achieved from this proposed implementation and highlight any further research work that is to be carried out.