A Linear Use Case Based Software Cost Estimation Model

Software development is moving towards agility with use cases and scenarios being used for requirements stories. Estimates of software costs are becoming even more important than before as effects of delays is much larger in successive short releases context of agile development. Thus, this paper reports on the development of new linear use case based software cost estimation model applicable in the very early stages of software development being based on simple metric. Evaluation showed that accuracy of estimates varies between 43% and 55% of actual effort of historical test projects. These results outperformed those of wellknown models when applied in the same context. Further work is being carried out to improve the performance of the proposed model when considering the effect of non-functional requirements.

Project Portfolio Management Phases: A Technique for Strategy Alignment

This paper seeks to give a general idea of the universe of project portfolio management, from its multidisciplinary nature, to the many challenges it raises, passing through the different techniques, models and tools used to solve the multiple problems known. It is intended to contribute to the clarification, with great depth, of the impacts and relationships involved in managing the projects- portfolio. It aims at proposing a technique for the project alignment with the organisational strategy, in order to select projects that later on will be considered in the analysis and selection of the portfolio. We consider the development of a methodology for assessing the project alignment index very relevant in the global market scenario. It can help organisations to gain a greater awareness of market dynamics, speed up the decision process and increase its consistency, thus enabling the strategic alignment and the improvement of the organisational performance.

Object-Oriented Simulation of Simulating Anticipatory Systems

The present paper is oriented to problems of simulation of anticipatory systems, namely those that use simulation models for the aid of anticipation. A certain analogy between use of simulation and imagining will be applied to make the explication more comprehensible. The paper will be completed by notes of problems and by some existing applications. The problems consist in the fact that simulation of the mentioned anticipatory systems end is simulation of simulating systems, i.e. in computer models handling two or more modeled time axes that should be mapped to real time flow in a nondescent manner. Languages oriented to objects, processes and blocks can be used to surmount the problems.

Evaluation of Radiation Synthesized β-Glucan Hydrogel Wound Dressing using Rat Models

In this study, hydrogels consisted of polyvinyl alcohol, propylene glycol and β-glucan were developed by radiation technique for wound dressing. The prepared hydrogels were characterized by examining of physical properties such as gel fraction and absorption ratio. The gel fraction and absorption ratio were dependent on the crosslinking density. On observing the wound healing of rat skin, the resulting hydrogels accelerated the wound healing comparing to cotton gauze. Therefore, the PVA/propylene glycol/β-glucan blended hydrogels can greatly accelerate the healing without causing irritation.

Elections, Checks and Balances, and Government Expenditures: Empirical Evidence for Japan, South Korea, and Taiwan

Previous studies on political budget cycles (PBCs) implicitly assume the executive has full discretion power over fiscal policy, neglecting the role of checks and balances of the legislature. This paper goes beyond traditional PBCs models and sheds light on the case study of Japan, South Korea, and Taiwan over the 1988-2007 periods. Based on the results, we find no evidence of electoral impacts on the public expenditures in South Korean and Taiwan's congressional elections. We also noted that PBCs are found on Taiwan-s government expenditures during our sample periods. Furthermore, the results also show that Japan-s legislature has a significant checks and balances on government-s expenditures. However, empirical results show that the legislature veto player in Taiwan neither has effect on the reduction of public expenditures, nor has the moderating effect over Taiwan-s political budget cycles, albeit that they are statistically insignificant.We suggest that the existence of PBCs in Taiwan is due to a weaker systemof checks and balances. Our conjecture is that Taiwan either has no legislative veto player or has observed low compliance to the law during the time period examined in our study.

Comparison of Different Neural Network Approaches for the Prediction of Kidney Dysfunction

This paper presents the prediction of kidney dysfunction using different neural network (NN) approaches. Self organization Maps (SOM), Probabilistic Neural Network (PNN) and Multi Layer Perceptron Neural Network (MLPNN) trained with Back Propagation Algorithm (BPA) are used in this study. Six hundred and sixty three sets of analytical laboratory tests have been collected from one of the private clinical laboratories in Baghdad. For each subject, Serum urea and Serum creatinin levels have been analyzed and tested by using clinical laboratory measurements. The collected urea and cretinine levels are then used as inputs to the three NN models in which the training process is done by different neural approaches. SOM which is a class of unsupervised network whereas PNN and BPNN are considered as class of supervised networks. These networks are used as a classifier to predict whether kidney is normal or it will have a dysfunction. The accuracy of prediction, sensitivity and specificity were found for each type of the proposed networks .We conclude that PNN gives faster and more accurate prediction of kidney dysfunction and it works as promising tool for predicting of routine kidney dysfunction from the clinical laboratory data.

An Optimized Multi-block Method for Turbulent Flows

A major part of the flow field involves no complicated turbulent behavior in many turbulent flows. In this research work, in order to reduce required memory and CPU time, the flow field was decomposed into several blocks, each block including its special turbulence. A two dimensional backward facing step was considered here. Four combinations of the Prandtl mixing length and standard k- E models were implemented as well. Computer memory and CPU time consumption in addition to numerical convergence and accuracy of the obtained results were mainly investigated. Observations showed that, a suitable combination of turbulence models in different blocks led to the results with the same accuracy as the high order turbulence model for all of the blocks, in addition to the reductions in memory and CPU time consumption.

Single-Camera EKF-vSLAM

This paper presents an Extended Kaman Filter implementation of a single-camera Visual Simultaneous Localization and Mapping algorithm, a novel algorithm for simultaneous localization and mapping problem widely studied in mobile robotics field. The algorithm is vision and odometry-based, The odometry data is incremental, and therefore it will accumulate error over time, since the robot may slip or may be lifted, consequently if the odometry is used alone we can not accurately estimate the robot position, in this paper we show that a combination of odometry and visual landmark via the extended Kalman filter can improve the robot position estimate. We use a Pioneer II robot and motorized pan tilt camera models to implement the algorithm.

A Pilot Study for the Optimization of Routes for Waste Collection Vehicles for the Göçmenköy District of Lefkoşa

A pilot project was carried out in 2007 by the senior students of Cyprus International University, aiming to minimize the total cost of waste collection in Northern Cyprus. Many developed and developing countries have cut their transportation costs – which lies between 30-40% – down at a rate of 40% percent, by implementing network models for their route assignments. Accordingly, a network model was implemented at Göçmenköy district, to optimize and standardize waste collection works. The work environment of the employees were also redesigned to provide maximum ergonomy and to increase productivity, efficiency and safety. Following the collection of the required data including waste densities, lengths of roads and population, a model was constructed to allocate the optimal route assignment for the waste collection trucks at Göçmenköy district.

Design of Domain-Specific Software Systems with Parametric Code Templates

Domain-specific languages describe specific solutions to problems in the application domain. Traditionally they form a solution composing black-box abstractions together. This, usually, involves non-deep transformations over the target model. In this paper we argue that it is potentially powerful to operate with grey-box abstractions to build a domain-specific software system. We present parametric code templates as grey-box abstractions and conceptual tools to encapsulate and manipulate these templates. Manipulations introduce template-s merging routines and can be defined in a generic way. This involves reasoning mechanisms at the code templates level. We introduce the concept of Neurath Modelling Language (NML) that operates with parametric code templates and specifies a visualisation mapping mechanism for target models. Finally we provide an example of calculating a domain-specific software system with predefined NML elements.

Neural Network-Based Control Strategies Applied to a Fed-Batch Crystallization Process

This paper is focused on issues of process modeling and two model based control strategies of a fed-batch sugar crystallization process applying the concept of artificial neural networks (ANNs). The control objective is to force the operation into following optimal supersaturation trajectory. It is achieved by manipulating the feed flow rate of sugar liquor/syrup, considered as the control input. The control task is rather challenging due to the strong nonlinearity of the process dynamics and variations in the crystallization kinetics. Two control alternatives are considered – model predictive control (MPC) and feedback linearizing control (FLC). Adequate ANN process models are first built as part of the controller structures. MPC algorithm outperforms the FLC approach with respect to satisfactory reference tracking and smooth control action. However, the MPC is computationally much more involved since it requires an online numerical optimization, while for the FLC an analytical control solution was determined.

Effective Class of Discreet Programing Problems

We consider herein a concise view of discreet programming models and methods. There has been conducted the models and methods analysis. On the basis of discreet programming models there has been elaborated and offered a new class of problems, i.e. block-symmetry models and methods of applied tasks statements and solutions.

Ontology-based Domain Modelling for Consistent Content Change Management

Ontology-based modelling of multi-formatted software application content is a challenging area in content management. When the number of software content unit is huge and in continuous process of change, content change management is important. The management of content in this context requires targeted access and manipulation methods. We present a novel approach to deal with model-driven content-centric information systems and access to their content. At the core of our approach is an ontology-based semantic annotation technique for diversely formatted content that can improve the accuracy of access and systems evolution. Domain ontologies represent domain-specific concepts and conform to metamodels. Different ontologies - from application domain ontologies to software ontologies - capture and model the different properties and perspectives on a software content unit. Interdependencies between domain ontologies, the artifacts and the content are captured through a trace model. The annotation traces are formalised and a graph-based system is selected for the representation of the annotation traces.

Formulation and in vitro Evaluation of Ondansetron Hydrochloride Matrix Transdermal Systems Using Ethyl Cellulose/Polyvinyl Pyrrolidone Polymer Blends

Transdermal delivery of ondansetron hydrochloride (OdHCl) can prevent the problems encountered with oral ondansetron. In previously conducted studies, effect of amount of polyvinyl pyrrolidone, permeation enhancer and casting solvent on the physicochemical properties on OdHCl were investigated. It is feasible to develop ondansetron transdermal patch by using ethyl cellulose and polyvinyl pyrrolidone with dibutyl pthalate as plasticizer, however, the desired flux is not achieved. The primary aim of this study is to use dimethyl succinate (DMS) and propylene glycol that are not incorporated in previous studies to determine their effect on the physicochemical properties of an OdHCl transdermal patch using ethyl cellulose and polyvinyl pyrrolidone. This study also investigates the effect of permeation enhancer (eugenol and phosphatidylcholine) on the release of OdHCl. The results showed that propylene glycol is a more suitable plasticizer compared to DMS in the fabrication of OdHCl transdermal patch using ethyl cellulose and polyvinyl pyrrolidone as polymers. Propylene glycol containing patch has optimum drug content, thickness, moisture content and water absorption, tensile strength, and a better release profile than DMS. Eugenol and phosphatidylcholine can increase release of OdHCl from the patches. From the physicochemical result and permeation profile, a combination of 350mg of ethyl cellulose, 150mg polyvinyl pyrrolidone, 3% of total polymer weight of eugenol, and 40% of total polymer weight of propylene glycol is the most suitable formulation to develop an OdHCl patch. OdHCl release did not increase with increasing the percentage of plasticiser. DMS 4, PG 4, DMS 9, PG 9, DMS 14, and PG 14 gave better release profiles where using 300mg: 0mg, 300mg: 100mg, and 350mg: 150mg of EC: PVP. Thus, 40% of PG or DMS appeared to be the optimum amount of plasticiser when the above combination where EC: PVP was used. It was concluded from the study that a patch formulation containing 350mg EC, 150mg PVP, 40% PG and 3% eugenol is the best transdermal matrix patch compositions for the uniform and continuous release/permeation of OdHCl over an extended period. This patch design can be used for further pharmacokinetic and pharmacodynamic studies in suitable animal models.

Recursive Filter for Coastal Displacement Estimation

All climate models agree that the temperature in Greece will increase in the range of 1° to 2°C by the year 2030 and mean sea level in Mediterranean is expected to rise at the rate of 5 cm/decade. The aim of the present paper is the estimation of the coastline displacement driven by the climate change and sea level rise. In order to achieve that, all known statistical and non-statistical computational methods are employed on some Greek coastal areas. Furthermore, Kalman filtering techniques are for the first time introduced, formulated and tested. Based on all the above, shoreline change signals and noises are computed and an inter-comparison between the different methods can be deduced to help evaluating which method is most promising as far as the retrieve of shoreline change rate is concerned.

Using the Geographic Information System (GIS) in the Sustainable Transportation

The significance of emissions from the road transport sector (such as air pollution, noise, etc) has grown considerably in recent years. In Australia, 14.3% of national greenhouse gas emissions in 2000 were the transport sector-s share which 12.9% of net national emissions were related to a road transport alone. Considering the growing attention to the green house gas(GHG) emissions, this paper attempts to provide air pollution modeling aspects of environmental consequences of the road transport by using one of the best computer based tools including the Geographic Information System (GIS). In other word, in this study, GIS and its applications is explained, models which are used to model air pollution and GHG emissions from vehicles are described and GIS is applied in real case study that attempts to forecast GHG emission from people who travel to work by car in 2031 in Melbourne for analysing results as thematic maps.

Artificial Neural Network Models of the Ruminal pH in Holstein Steers

In this study four Holstein steers with rumen fistula fed 7 kg of dry matter (DM) of diets differing in concentrate to alfalfa hay ratios as 60:40, 70:30, 80:20, and 90:10 in a 4 × 4 latin square design. The pH of the ruminal fluid was measured before the morning feeding (0.0 h) to 8 h post feeding. In this study, a two-layered feed-forward neural network trained by the Levenberg-Marquardt algorithm was used for modelling of ruminal pH. The input variables of the network were time, concentrate to alfalfa hay ratios (C/F), non fiber carbohydrate (NFC) and neutral detergent fiber (NDF). The output variable was the ruminal pH. The modeling results showed that there was excellent agreement between the experimental data and predicted values, with a high determination coefficient (R2 >0.96). Therefore, we suggest using these model-derived biological values to summarize continuously recorded pH data.

Comparison among Various Question Generations for Decision Tree Based State Tying in Persian Language

Performance of any continuous speech recognition system is highly dependent on performance of the acoustic models. Generally, development of the robust spoken language technology relies on the availability of large amounts of data. Common way to cope with little data for training each state of Markov models is treebased state tying. This tying method applies contextual questions to tie states. Manual procedure for question generation suffers from human errors and is time consuming. Various automatically generated questions are used to construct decision tree. There are three approaches to generate questions to construct HMMs based on decision tree. One approach is based on misrecognized phonemes, another approach basically uses feature table and the other is based on state distributions corresponding to context-independent subword units. In this paper, all these methods of automatic question generation are applied to the decision tree on FARSDAT corpus in Persian language and their results are compared with those of manually generated questions. The results show that automatically generated questions yield much better results and can replace manually generated questions in Persian language.

Damage Evolution of Underground Structural Reinforced Concrete Small-Scale Static-Loading Experiments

Small-scale RC models of both piles and tunnel ducts were produced as mockups of reality and loaded under soil confinement conditionsto investigate the damage evolution of structural RC interacting with soil. Experimental verifications usinga 3D nonlinear FE analysis program called COM3D, which was developed at the University of Tokyo, are introduced. This analysis has been used in practice for seismic performance assessment of underground ducts and in-ground LNG storage tanks in consideration of soil-structure interactionunder static and dynamic loading. Varying modes of failure of RCpilessubjected to different magnitudes of soil confinement were successfully reproduced in the proposed small-scale experiments and numerically simulated as well. Analytical simulation was applied to RC tunnel mockups under a wide variety of depth and soil confinement conditions, and reasonable matching was confirmed.

Experimental Study of Frequency Behavior for a Circular Cylinder behind an Airfoil

The interaction between wakes of bluff body and airfoil have profound influences on system performance in many industrial applications, e.g., turbo-machinery and cooling fan. The present work investigates the effect of configuration include; airfoil-s angle of attack, transverse and inline spacing of the models, on frequency behavior of the cylinder-s near-wake. The experiments carried on under subcritical flow regime, using the hot-wire anemometry (HWA). The relationship between the Strouhal numbers and arrangements provide an insight into the global physical processes of wake interaction and vortex shedding.