Optimal Policy for a Deteriorating Inventory Model with Finite Replenishment Rate and with Price Dependant Demand Rate and Cycle Length Dependant Price

In this paper, an inventory model with finite and constant replenishment rate, price dependant demand rate, time value of money and inflation, finite time horizon, lead time and exponential deterioration rate and with the objective of maximizing the present worth of the total system profit is developed. Using a dynamic programming based solution algorithm, the optimal sequence of the cycles can be found and also different optimal selling prices, optimal order quantities and optimal maximum inventories can be obtained for the cycles with unequal lengths, which have never been done before for this model. Also, a numerical example is used to show accuracy of the solution procedure.

Deterministic Random Number Generators for Online Applications

Cryptography, Image watermarking and E-banking are filled with apparent oxymora and paradoxes. Random sequences are used as keys to encrypt information to be used as watermark during embedding the watermark and also to extract the watermark during detection. Also, the keys are very much utilized for 24x7x365 banking operations. Therefore a deterministic random sequence is very much useful for online applications. In order to obtain the same random sequence, we need to supply the same seed to the generator. Many researchers have used Deterministic Random Number Generators (DRNGs) for cryptographic applications and Pseudo Noise Random sequences (PNs) for watermarking. Even though, there are some weaknesses in PN due to attacks, the research community used it mostly in digital watermarking. On the other hand, DRNGs have not been widely used in online watermarking due to its computational complexity and non-robustness. Therefore, we have invented a new design of generating DRNG using Pi-series to make it useful for online Cryptographic, Digital watermarking and Banking applications.

The Solar Wall in the Italian Climates

Passive systems were born with the purpose of the greatest exploitation of solar energy in cold climates and high altitudes. They spread themselves until the 80-s all over the world without any attention to the specific climate and the summer behavior; this caused the deactivation of the systems due to a series of problems connected to the summer overheating, the complex management and the rising of the dust. Until today the European regulation limits only the winter consumptions without any attention to the summer behavior but, the recent European EN 15251 underlines the relevance of the indoor comfort, and the necessity of the analytic studies validation by monitoring case studies. In the porpose paper we demonstrate that the solar wall is an efficient system both from thermal comfort and energy saving point of view and it is the most suitable for our temperate climates because it can be used as a passive cooling sistem too. In particular the paper present an experimental and numerical analisys carried out on a case study with nine different solar passive systems in Ancona, Italy. We carried out a detailed study of the lodging provided by the solar wall by the monitoring and the evaluation of the indoor conditions. Analyzing the monitored data, on the base of recognized models of comfort (ISO, ASHRAE, Givoni-s BBCC), is emerged that the solar wall has an optimal behavior in the middle seasons. In winter phase this passive system gives more advantages in terms of energy consumptions than the other systems, because it gives greater heat gain and therefore smaller consumptions. In summer, when outside air temperature return in the mean seasonal value, the indoor comfort is optimal thanks to an efficient transversal ventilation activated from the same wall.

Scrum as the Method Supporting the Implementation of Knowledge Management in an Organization

Many companies have switched their processes to project-oriented in the last years. This brings new possibilities and effectiveness not only in the field of external processes connected with the product delivery but also the internal processes as well. However centralized project organization which is based on the role of project manager in the team has proved insufficient in some cases. Agile methods of project organization are trying to solve this problem by bringing new view on the project organization, roles, processes and competences. Scrum is one of these methods which builds on the principles of knowledge management to drive the project to effectiveness from all view angles. Using this method to organize internal and delivery projects helps the organization to create and share knowledge throughout the company. It also supports forming unique competences of individuals and project teams and drives innovations in the company.

Mining Frequent Patterns with Functional Programming

Frequent patterns are patterns such as sets of features or items that appear in data frequently. Finding such frequent patterns has become an important data mining task because it reveals associations, correlations, and many other interesting relationships hidden in a dataset. Most of the proposed frequent pattern mining algorithms have been implemented with imperative programming languages such as C, Cµ, Java. The imperative paradigm is significantly inefficient when itemset is large and the frequent pattern is long. We suggest a high-level declarative style of programming using a functional language. Our supposition is that the problem of frequent pattern discovery can be efficiently and concisely implemented via a functional paradigm since pattern matching is a fundamental feature supported by most functional languages. Our frequent pattern mining implementation using the Haskell language confirms our hypothesis about conciseness of the program. The performance studies on speed and memory usage support our intuition on efficiency of functional language.

School Homework and its Relationship with Student Academic Achievement in Malaysia

School homework has been synonymous with students- life in Chinese national type primary schools in Malaysia. Although many reports in the press claimed that students were burdened with too much of it, homework continues to be a common practice in national type schools that is believed to contribute to academic achievement. This study is conducted to identify the relationship between the burden of school homework and academic achievement among pupils in Chinese National Type Primary School in the state of Perak, Malaysia. A total of 284 students (142 from urban and 142 from rural) respectively were chosen as participants in this study. Variables of gender and location (urban/rural areas) has shown significant difference in student academic achievement. Female Chinese student from rural areas showed a higher mean score than males from urban area. Therefore, the Chinese language teachers should give appropriate and relevant homework to primary school students to achieve good academic performance.

Enhancing Operational Effectiveness in the Norwegian Army through Simulation-Based Training

The Norwegian Military Academy (Army) has initiated a project with the main ambition to explore possible avenues to enhancing operational effectiveness through an increased use of simulation-based training and exercises. Within a cost/benefit framework, we discuss opportunities and limitations of vertical and horizontal integration of the existing tactical training system. Vertical integration implies expanding the existing training system to span the full range of training from tactical level (platoon, company) to command and staff level (battalion, brigade). Horizontal integration means including other domains than army tactics and staff procedures in the training, such as military ethics, foreign languages, leadership and decision making. We discuss each of the integration options with respect to purpose and content of training, "best practice" for organising and conducting simulation-based training, and suggest how to evaluate training procedures and measure learning outcomes. We conclude by giving guidelines towards further explorative work and possible implementation.

Dynamic Response of a Water Tower Composed of Interlocked Panels

Earthquakes produce some of the most violent loading situations that a structure can be subjected to and if a structure fails under these loads then inevitably human life is put at risk. One of the most common methods by which a structure fails under seismic loading is at the connection of structural elements. The research presented in this paper investigates the interlock systems as a novel method for building structures. The main objective of this experimental study wasto determine the dynamic characteristics and the seismic behaviour of the proposed structures compared to conventional structural systemsduring seismic motions. Results of this study indicate that the interlock mechanism of the panels influences the behaviour of lateral load-resisting systems of the structures during earthquakes, contributing to better structural flexibility and easier maintenance.

A Survey of Job Scheduling and Resource Management in Grid Computing

Grid computing is a form of distributed computing that involves coordinating and sharing computational power, data storage and network resources across dynamic and geographically dispersed organizations. Scheduling onto the Grid is NP-complete, so there is no best scheduling algorithm for all grid computing systems. An alternative is to select an appropriate scheduling algorithm to use in a given grid environment because of the characteristics of the tasks, machines and network connectivity. Job and resource scheduling is one of the key research area in grid computing. The goal of scheduling is to achieve highest possible system throughput and to match the application need with the available computing resources. Motivation of the survey is to encourage the amateur researcher in the field of grid computing, so that they can understand easily the concept of scheduling and can contribute in developing more efficient scheduling algorithm. This will benefit interested researchers to carry out further work in this thrust area of research.

Hybrid Energy Supply with Dominantly Renewable Option for Small Industrial Complex

The deficit of power for electricity demand reaches almost 30% for consumers in the last few years. This reflects with continually increasing the price of electricity, and today the price for small industry is almost 110Euro/MWh. The high price is additional problem for the owners in the economy crisis which is reflected with higher price of the goods. The paper gives analyses of the energy needs for real agro complex in Macedonia, private vinery with capacity of over 2 million liters in a year and with self grapes and fruits fields. The existing power supply is from grid with 10/04 kV transformer. The geographical and meteorological condition of the vinery location gives opportunity for including renewable as a power supply option for the vinery complex. After observation of the monthly energy needs for the vinery, the base scenario is the existing power supply from the distribution grid. The electricity bill in small industry has three factors: electricity in high and low tariffs in kWh and the power engaged for the technological process of production in kW. These three factors make the total electricity bill and it is over 110 Euro/MWh which is the price near competitive for renewable option. On the other side investments in renewable (especially photovoltaic (PV)) has tendency of decreasing with price of near 1,5 Euro/W. This means that renewable with PV can be real option for power supply for small industry capacities (under 500kW installed power). Therefore, the other scenarios give the option with PV and the last one includes wind option. The paper presents some scenarios for power supply of the vinery as the followings: • Base scenario of existing conventional power supply from the grid • Scenario with implementation of renewable of Photovoltaic • Scenario with implementation of renewable of Photovoltaic and Wind power The total power installed in a vinery is near 570 kW, but the maximum needs are around 250kW. At the end of the full paper some of the results from scenarios will be presented. The paper also includes the environmental impacts of the renewable scenarios, as well as financial needs for investments and revenues from renewable.

Mathematical Modeling of Storm Surge in Three Dimensional Primitive Equations

The mathematical modeling of storm surge in sea and coastal regions such as the South China Sea (SCS) and the Gulf of Thailand (GoT) are important to study the typhoon characteristics. The storm surge causes an inundation at a lateral boundary exhibiting in the coastal zones particularly in the GoT and some part of the SCS. The model simulations in the three dimensional primitive equations with a high resolution model are important to protect local properties and human life from the typhoon surges. In the present study, the mathematical modeling is used to simulate the typhoon–induced surges in three case studies of Typhoon Linda 1997. The results of model simulations at the tide gauge stations can describe the characteristics of storm surges at the coastal zones.

Control of the Thermal Evaporation of Organic Semiconductors via Exact Linearization

In this article, a high vacuum system for the evaporation of organic semiconductors is introduced and a mathematical model is given. Based on the exact input output linearization a deposition rate controller is designed and tested with different evaporation materials.

Periodic Solutions for a Delayed Population Model on Time Scales

This paper deals with a delayed single population model on time scales. With the assistance of coincidence degree theory, sufficient conditions for existence of periodic solutions are obtained. Furthermore, the better estimations for bounds of periodic solutions are established.

Contemporary Housing Indicators in Poland on the Wroclaw Study Case

The paper presents the results of research on trends in shaping of multifamily buildings in Poland on the example of Wrocław, after Polish accession to the European Union. The study is conducted within the research project: “Trends in creating of multifamily housing development since 2004, on the Wrocław study case" supported by Polish Ministry of Science and Higher Education and will be completed in November 2011. The research involves multifamily buildings completed in the last decade, in term of fundamental urbanization factors such as: building-s coefficient area, useable area, green area (biologically active surface), intensity of building development, amount of dwellings, dwelling area, amount of parking places, numbers of floors, etc. The analysis of these indicators was conducted based on the date obtained in the study of approximately one hundred new housing units, completed in Wroclaw. The analysis attempts to formulate the main trends in creating of housing policy in Poland during the last 10 years in reference to local urban policy.

Drum-Buffer-Rope: The Technique to Plan and Control the Production Using Theory of Constraints

Theory of Constraints has been emerging as an important tool for optimization of manufacturing/service systems. Goldratt in his first book “ The Goal " gave the introduction on Theory of Constraints and its applications in a factory scenario. A large number of production managers around the globe read this book but only a few could implement it in their plants because the book did not explain the steps to implement TOC in the factory. To overcome these limitations, Goldratt wrote this book to explain TOC, DBR and the method to implement it. In this paper, an attempt has been made to summarize the salient features of TOC and DBR listed in the book and the correct approach to implement TOC in a factory setting. The simulator available along with the book was actually used by the authors and the claim of Goldratt regarding the use of DBR and Buffer management to ease the work of production managers was tested and was found to be correct.

Introduction of Open-Source e-Learning Environment and Resources: A Novel Approach for Secondary Schools in Tanzania

The concept of e-Learning is now emerging in Sub Saharan African countries like Tanzania. Due to economic constraints and other social and cultural factors faced by these countries, the use of Information and Communication Technology (ICT) is increasing at a very low pace. The digital divide threat has propelled the Government of Tanzania to put in place the national ICT Policy in 2003 which defines the direction of all ICT activities nationally. Among the main focused areas is the use of ICT in education, since for the development of any country, there is a need of creating knowledge based society. This paper discusses the initiatives made so far to introduce the use of ICT tools to some secondary schools using open source software in e-content development to facilitate a self-learning environment

A Review on Application of Chitosan as a Natural Antimicrobial

In recent years application of natural antimicrobials instead of conventional ones, due to their hazardous effects on health, has got serious attentions. On the basis of the results of different studies, chitosan, a natural bio-degradable and non-toxic biopolysaccharide derived from chitin, has potential to be used as a natural antimicrobial. Chitosan has exhibited high antimicrobial activity against a wide variety of pathogenic and spoilage microorganisms, including fungi, and Gram-positive and Gramnegative bacteria. The antimicrobial action is influenced by intrinsic factors such as the type of chitosan, the degree of chitosan polymerization and extrinsic factors such as the microbial organism, the environmental conditions and presence of the other components. The use of chitosan in food systems should be based on sufficient knowledge of the complex mechanisms of its antimicrobial mode of action. In this article we review a number of studies on the investigation of chitosan antimicrobial properties and application of them in culture and food mediums.

An Optimization of Orbital Transfer for Spacecrafts with Finite-thrust Based on Legendre Pseudospectral Method

This paper presents the use of Legendre pseudospectral method for the optimization of finite-thrust orbital transfer for spacecrafts. In order to get an accurate solution, the System-s dynamics equations were normalized through a dimensionless method. The Legendre pseudospectral method is based on interpolating functions on Legendre-Gauss-Lobatto (LGL) quadrature nodes. This is used to transform the optimal control problem into a constrained parameter optimization problem. The developed novel optimization algorithm can be used to solve similar optimization problems of spacecraft finite-thrust orbital transfer. The results of a numerical simulation verified the validity of the proposed optimization method. The simulation results reveal that pseudospectral optimization method is a promising method for real-time trajectory optimization and provides good accuracy and fast convergence.

2D Spherical Spaces for Face Relighting under Harsh Illumination

In this paper, we propose a robust face relighting technique by using spherical space properties. The proposed method is done for reducing the illumination effects on face recognition. Given a single 2D face image, we relight the face object by extracting the nine spherical harmonic bases and the face spherical illumination coefficients. First, an internal training illumination database is generated by computing face albedo and face normal from 2D images under different lighting conditions. Based on the generated database, we analyze the target face pixels and compare them with the training bootstrap by using pre-generated tiles. In this work, practical real time processing speed and small image size were considered when designing the framework. In contrast to other works, our technique requires no 3D face models for the training process and takes a single 2D image as an input. Experimental results on publicly available databases show that the proposed technique works well under severe lighting conditions with significant improvements on the face recognition rates.

Photograph Based Pair-matching Recognition of Human Faces

In this paper, a novel system recognition of human faces without using face different color photographs is proposed. It mainly in face detection, normalization and recognition. Foot method of combination of Haar-like face determined segmentation and region-based histogram stretchi (RHST) is proposed to achieve more accurate perf using Haar. Apart from an effective angle norm side-face (pose) normalization, which is almost a might be important and beneficial for the prepr introduced. Then histogram-based and photom normalization methods are investigated and ada retinex (ASR) is selected for its satisfactory illumin Finally, weighted multi-block local binary pattern with 3 distance measures is applied for pair-mat Experimental results show its advantageous perfo with PCA and multi-block LBP, based on a principle.