Assessment of the Energy Balance Method in the Case of Masonry Domes

Masonry dome structures had been widely used for covering large spans in the past. The seismic assessment of these historical structures is very complicated due to the nonlinear behavior of the material, their rigidness, and special stability configuration. The assessment method based on energy balance concept, as well as the standard pushover analysis, is used to evaluate the effectiveness of these methods in the case of masonry dome structures. The Soltanieh dome building is used as an example to which two methods are applied. The performance points are given from superimposing the capacity, and demand curves in Acceleration Displacement Response Spectra (ADRS) and energy coordination are compared with the nonlinear time history analysis as the exact result. The results show a good agreement between the dynamic analysis and the energy balance method, but standard pushover method does not provide an acceptable estimation.

Response of Local Cowpea to Intra Row Spacing and Weeding Regimes in Yobe State, Nigeria

Weeds are known to interfere seriously with crop growth, thereby affecting the productivity and quality of crops. Crops are also known to compete for natural growth resources if they are not adequately spaced, also affecting the performance of the growing crop. Farmers grow cowpea in mixtures with cereals and this is known to affect its yield. For this reason, a field experiment was conducted at Yobe State College of Agriculture Gujba, Damaturu station in the 2014 and 2015 rainy seasons to determine the appropriate intra row spacing and weeding regime for optimum growth and yield of cowpea (Vigna unguiculata L.) in pure stand in Sudan Savanna ecology. The treatments consist of three levels of spacing within rows (20 cm, 30 cm and 40 cm) and four weeding regimes (none, once at 3 weeks after sowing (WAS), twice at 3 and 6WAS, thrice at 3WAS, 6WAS and 9WAS); arranged in a Randomized Complete Block Design (RCBD) and replicated three times. The variety used was the local cowpea variety (white, early and spreading) commonly grown by farmers. The growth and yield data were collected and subjected to analysis of variance using SAS software, and the significant means were ranked by Students Newman Keul’s test (SNK). The findings of this study revealed better crop performance in 2015 than in 2014 despite poor soil condition. Intra row spacing significantly influenced vegetative growth especially the number of main branches, leaves and canopy spread at 6WAS and 9WAS with the highest values obtained at wider spacing (40 cm). The values obtained in 2015 doubled those obtained in 2014 in most cases. Spacing also significantly affected the number of pods in 2015, seed weight in both years and grain yield in 2014 with the highest values obtained when the crop was spaced at 30-40 cm. Similarly, weeding regime significantly influenced almost all the growth attributes of cowpea with higher values obtained from where cowpea was weeded three times at 3-week intervals, though statistically similar results were obtained even from where cowpea was weeded twice. Weeding also affected the entire yield and yield components in 2015 with the highest values obtained with increase weeding. Based on these findings, it is recommended that spreading cowpea varieties should be grown at 40 cm (or wider spacing) within rows and be weeded twice at three-week intervals for better crop performance in related ecologies.

Secure Hashing Algorithm and Advance Encryption Algorithm in Cloud Computing

Cloud computing is one of the most sharp and important movement in various computing technologies. It provides flexibility to users, cost effectiveness, location independence, easy maintenance, enables multitenancy, drastic performance improvements, and increased productivity. On the other hand, there are also major issues like security. Being a common server, security for a cloud is a major issue; it is important to provide security to protect user’s private data, and it is especially important in e-commerce and social networks. In this paper, encryption algorithms such as Advanced Encryption Standard algorithms, their vulnerabilities, risk of attacks, optimal time and complexity management and comparison with other algorithms based on software implementation is proposed. Encryption techniques to improve the performance of AES algorithms and to reduce risk management are given. Secure Hash Algorithms, their vulnerabilities, software implementations, risk of attacks and comparison with other hashing algorithms as well as the advantages and disadvantages between hashing techniques and encryption are given.

CompPSA: A Component-Based Pairwise RNA Secondary Structure Alignment Algorithm

The biological function of an RNA molecule depends on its structure. The objective of the alignment is finding the homology between two or more RNA secondary structures. Knowing the common functionalities between two RNA structures allows a better understanding and a discovery of other relationships between them. Besides, identifying non-coding RNAs -that is not translated into a protein- is a popular application in which RNA structural alignment is the first step A few methods for RNA structure-to-structure alignment have been developed. Most of these methods are partial structure-to-structure, sequence-to-structure, or structure-to-sequence alignment. Less attention is given in the literature to the use of efficient RNA structure representation and the structure-to-structure alignment methods are lacking. In this paper, we introduce an O(N2) Component-based Pairwise RNA Structure Alignment (CompPSA) algorithm, where structures are given as a component-based representation and where N is the maximum number of components in the two structures. The proposed algorithm compares the two RNA secondary structures based on their weighted component features rather than on their base-pair details. Extensive experiments are conducted illustrating the efficiency of the CompPSA algorithm when compared to other approaches and on different real and simulated datasets. The CompPSA algorithm shows an accurate similarity measure between components. The algorithm gives the flexibility for the user to align the two RNA structures based on their weighted features (position, full length, and/or stem length). Moreover, the algorithm proves scalability and efficiency in time and memory performance.

An Investigation on Material Removal Rate of EDM Process: A Response Surface Methodology Approach

In the present work response surface methodology (RSM) based central composite design (CCD) is used for analyzing the electrical discharge machining (EDM) process. For experimentation, mild steel is selected as work piece and copper is used as electrode. Three machining parameters namely current (I), spark on time (Ton) and spark off time (Toff) are selected as the input variables. The output or response chosen is material removal rate (MRR) which is to be maximized. To reduce the number of runs face centered central composite design (FCCCD) was used. ANOVA was used to determine the significance of parameter and interactions. The suitability of model is tested using Anderson darling (AD) plot. The results conclude that different parameters considered i.e. current, pulse on and pulse off time; all have dominant effect on the MRR. At last, the optimized parameter setting for maximizing MRR is found through main effect plot analysis.

Towards an Enhanced Quality of IPTV Media Server Architecture over Software Defined Networking

The aim of this paper is to present the QoE (Quality of Experience) IPTV SDN-based media streaming server enhanced architecture for configuring, controlling, management and provisioning the improved delivery of IPTV service application with low cost, low bandwidth, and high security. Furthermore, it is given a virtual QoE IPTV SDN-based topology to provide an improved IPTV service based on QoE Control and Management of multimedia services functionalities. Inside OpenFlow SDN Controller there are enabled in high flexibility and efficiency Service Load-Balancing Systems; based on the Loading-Balance module and based on GeoIP Service. This two Load-balancing system improve IPTV end-users Quality of Experience (QoE) with optimal management of resources greatly. Through the key functionalities of OpenFlow SDN controller, this approach produced several important features, opportunities for overcoming the critical QoE metrics for IPTV Service like achieving incredible Fast Zapping time (Channel Switching time) < 0.1 seconds. This approach enabled Easy and Powerful Transcoding system via FFMPEG encoder. It has the ability to customize streaming dimensions bitrates, latency management and maximum transfer rates ensuring delivering of IPTV streaming services (Audio and Video) in high flexibility, low bandwidth and required performance. This QoE IPTV SDN-based media streaming architecture unlike other architectures provides the possibility of Channel Exchanging between several IPTV service providers all over the word. This new functionality brings many benefits as increasing the number of TV channels received by end –users with low cost, decreasing stream failure time (Channel Failure time < 0.1 seconds) and improving the quality of streaming services.

Evolving Knowledge Extraction from Online Resources

In this paper, we present an evolving knowledge extraction system named AKEOS (Automatic Knowledge Extraction from Online Sources). AKEOS consists of two modules, including a one-time learning module and an evolving learning module. The one-time learning module takes in user input query, and automatically harvests knowledge from online unstructured resources in an unsupervised way. The output of the one-time learning is a structured vector representing the harvested knowledge. The evolving learning module automatically schedules and performs repeated one-time learning to extract the newest information and track the development of an event. In addition, the evolving learning module summarizes the knowledge learned at different time points to produce a final knowledge vector about the event. With the evolving learning, we are able to visualize the key information of the event, discover the trends, and track the development of an event.

Producing Sustained Renewable Energy and Removing Organic Pollutants from Distillery Wastewater using Consortium of Sludge Microbes

Distillery wastewater in the form of spent wash is a complex and strong industrial effluent, with high load of organic pollutants that may deplete dissolved oxygen on being discharged into aquatic systems and contaminate groundwater by leaching of pollutants, while untreated spent wash disposed on land acidifies the soil. Stringent legislative measures have therefore been framed in different countries for discharge standards of distillery effluent. Utilising the organic pollutants present in various types of wastes as food by mixed microbial populations is emerging as an eco-friendly approach in the recent years, in which complex organic matter is converted into simpler forms, and simultaneously useful gases are produced as renewable and clean energy sources. In the present study, wastewater from a rice bran based distillery has been used as the substrate in a dark fermenter, and native microbial consortium from the digester sludge has been used as the inoculum to treat the wastewater and produce hydrogen. After optimising the operational conditions in batch reactors, sequential batch mode and continuous flow stirred tank reactors were used to study the best operational conditions for enhanced and sustained hydrogen production and removal of pollutants. Since the rate of hydrogen production by the microbial consortium during dark fermentation is influenced by concentration of organic matter, pH and temperature, these operational conditions were optimised in batch mode studies. Maximum hydrogen production rate (347.87ml/L/d) was attained in 32h dark fermentation while a good proportion of COD also got removed from the wastewater. Slightly acidic initial pH seemed to favor biohydrogen production. In continuous stirred tank reactor, high H2 production from distillery wastewater was obtained from a relatively shorter substrate retention time (SRT) of 48h and a moderate organic loading rate (OLR) of 172 g/l/d COD.

Effects of Irrigation Scheduling and Soil Management on Maize (Zea mays L.) Yield in Guinea Savannah Zone of Nigeria

The main objective of any irrigation program is the development of an efficient water management system to sustain crop growth and development and avoid physiological water stress in the growing plants. Field experiment to evaluate the effects of some soil moisture conservation practices on yield and water use efficiency (WUE) of maize was carried out in three locations (i.e. Mubi and Yola in the northern Guinea Savannah and Ganye in the southern Guinea Savannah of Adamawa State, Nigeria) during the dry seasons of 2013 and 2014. The experiment consisted of three different irrigation levels (7, 10 and 12 day irrigation intervals), two levels of mulch (mulch and un-mulched) and two tillage practices (no tillage and minimum tillage) arranged in a randomized complete block design with split-split plot arrangement and replicated three times. The Blaney-Criddle method was used for measuring crop evapotranspiration. The results indicated that seven-day irrigation intervals and mulched treatment were found to have significant effect (P>0.05) on grain yield and water use efficiency in all the locations. The main effect of tillage was non-significant (P0.05) on grain yield and WUE at Mubi and Yola. Generally, higher grain yield and WUE were recorded on mulched and seven-day irrigation intervals, whereas lower values were recorded on un-mulched with 12-day irrigation intervals. Tillage exerts little influence on the yield and WUE. Results from Ganye were found to be generally higher than those recorded in Mubi and Yola; it also showed that an irrigation interval of 10 days with mulching could be adopted for the Ganye area, while seven days interval is more appropriate for Mubi and Yola.

Asymmetrical Informative Estimation for Macroeconomic Model: Special Case in the Tourism Sector of Thailand

This paper used an asymmetric informative concept to apply in the macroeconomic model estimation of the tourism sector in Thailand. The variables used to statistically analyze are Thailand international and domestic tourism revenues, the expenditures of foreign and domestic tourists, service investments by private sectors, service investments by the government of Thailand, Thailand service imports and exports, and net service income transfers. All of data is a time-series index which was observed between 2002 and 2015. Empirically, the tourism multiplier and accelerator were estimated by two statistical approaches. The first was the result of the Generalized Method of Moments model (GMM) based on the assumption which the tourism market in Thailand had perfect information (Symmetrical data). The second was the result of the Maximum Entropy Bootstrapping approach (MEboot) based on the process that attempted to deal with imperfect information and reduced uncertainty in data observations (Asymmetrical data). In addition, the tourism leakages were investigated by a simple model based on the injections and leakages concept. The empirical findings represented the parameters computed from the MEboot approach which is different from the GMM method. However, both of the MEboot estimation and GMM model suggests that Thailand’s tourism sectors are in a period capable of stimulating the economy.

Evaluation of Leagile Criteria Using DEMATEL Approach

There is drastic change in manufacturing era in last two decades. It has become mandatory for the industries to become aware of latest and advanced manufacturing technologies and strategies. Leagile manufacturing focuses on minimizing the wastes and meeting customers’ requirements in minimum time possible. However, it becomes difficult to implement all leagile tools simultaneously in industry. In this paper, 17 main criteria of leagile manufacturing have been found and DEMATEL (Decision Making Trial and Evaluation Laboratory) approach has been applied to analyze importance of criteria and casual relations among these criteria.

Nonlinear Stability of Convection in a Thermally Modulated Anisotropic Porous Medium

Conditions corresponding to the unconditional stability of convection in a mechanically anisotropic fluid saturated porous medium of infinite horizontal extent are determined. The medium is heated from below and its bounding surfaces are subjected to temperature modulation which consists of a steady part and a time periodic oscillating part. The Brinkman model is employed in the momentum equation with the Bousinessq approximation. The stability region is found for arbitrary values of modulational frequency and amplitude using the energy method. Higher order numerical computations are carried out to find critical boundaries and subcritical instability regions more accurately.

Study of Rayleigh-Bénard-Brinkman Convection Using LTNE Model and Coupled, Real Ginzburg-Landau Equations

A local nonlinear stability analysis using a eight-mode expansion is performed in arriving at the coupled amplitude equations for Rayleigh-Bénard-Brinkman convection (RBBC) in the presence of LTNE effects. Streamlines and isotherms are obtained in the two-dimensional unsteady finite-amplitude convection regime. The parameters’ influence on heat transport is found to be more pronounced at small time than at long times. Results of the Rayleigh-Bénard convection is obtained as a particular case of the present study. Additional modes are shown not to significantly influence the heat transport thus leading us to infer that five minimal modes are sufficient to make a study of RBBC. The present problem that uses rolls as a pattern of manifestation of instability is a needed first step in the direction of making a very general non-local study of two-dimensional unsteady convection. The results may be useful in determining the preferred range of parameters’ values while making rheometric measurements in fluids to ascertain fluid properties such as viscosity. The results of LTE are obtained as a limiting case of the results of LTNE obtained in the paper.

The Effect of Smartphones on Human Health Relative to User’s Addiction: A Study on a Wide Range of Audiences in Jordan

The objective of this study is to investigate the effect of the excessive use of smartphones. Smartphones have enormous effects on the human body in that some musculoskeletal disorders (MSDs) and health problems might evolve. These days, there is a wide use of the smartphones among all age groups of society, thus, the focus on smartphone effects on human behavior and health, especially on the young and elderly people, becomes a crucial issue. This study was conducted in Jordan on smartphone users for different genders and ages, by conducting a survey to collect data related to the symptoms and MSDs that are resulted from the excessive use of smartphones. A total of 357 responses were used in the analysis. The main related symptoms were numbness, fingers pain, and pain in arm, all linked to age and gender for comparative reasons. A statistical analysis was performed to find the effects of extensive usage of a smartphone for long periods of time on the human body. Results show that the significant variables were the vision problems and the time spent when using the smartphone that cause vision problems. Other variables including age of user and ear problems due to the use of the headsets were found to be a border line significant.

Academic Influence of Social Network Sites on the Collegiate Performance of Technical College Students

Social network sites (SNS) is an emerging phenomenon that is here to stay. The popularity and the ubiquity of the SNS technology are undeniable. Because most SNS are free and easy to use people from all walks of life and from almost any age are attracted to that technology. College age students are by far the largest segment of the population using SNS. Since most SNS have been adapted for mobile devices, not only do you find students using this technology in their study, while working on labs or on projects, a substantial number of students have been found to use SNS even while listening to lectures. This study found that SNS use has a significant negative impact on the grade point average of college students particularly in the first semester. However, this negative impact is greatly diminished by the end of the third semester partly because the students have adjusted satisfactorily to the challenges of college or because they have learned how to adequately manage their time. It was established that the kinds of activities the students are engaged in during the SNS use are the leading factor affecting academic performance. Of those activities, using SNS during a lecture or while studying is the foremost contributing factor to lower academic performance. This is due to “cognitive” or “information” bottleneck, a condition in which the students find it very difficult to multitask or to switch between resources leading to inefficiency in information retention and thus, educational performance.

An Inverse Heat Transfer Algorithm for Predicting the Thermal Properties of Tumors during Cryosurgery

This study aimed at developing an inverse heat transfer approach for predicting the time-varying freezing front and the temperature distribution of tumors during cryosurgery. Using a temperature probe pressed against the layer of tumor, the inverse approach is able to predict simultaneously the metabolic heat generation and the blood perfusion rate of the tumor. Once these parameters are predicted, the temperature-field and time-varying freezing fronts are determined with the direct model. The direct model rests on one-dimensional Pennes bioheat equation. The phase change problem is handled with the enthalpy method. The Levenberg-Marquardt Method (LMM) combined to the Broyden Method (BM) is used to solve the inverse model. The effect (a) of the thermal properties of the diseased tissues; (b) of the initial guesses for the unknown thermal properties; (c) of the data capture frequency; and (d) of the noise on the recorded temperatures is examined. It is shown that the proposed inverse approach remains accurate for all the cases investigated.

Economic Effects of Maritime Environmental Legislation in the North and Baltic Sea Area: An Exploratory Sequential Mixed Methods Approach

Environmental legislation to protect North and Baltic Sea areas from harmful vessel-source emissions has received increased political attention in recent years. Legislative measures are expected to show positive effects on the health of the marine environment and society. At the same time, compliance might increase the costs to industry and have effects on freight rates and volumes shipped with potential negative repercussions on the environment. Building on an exploratory sequential mixed methods approach, this research project will study the economic effects of maritime environmental legislation in two phases. In Phase I, exploratory in-depth interviews were conducted with 12 experts from various stakeholder groups aiming at identifying variables influencing the relationship between environmental legislation, freight rates and volumes shipped. Influencing factors like compliance, enforcement and modal shift were identified and studied. Phase II will comprise of a quantitative study conducted with the aim of verifying the theory build in Phase I and quantifying economic effects of rules on shipping pollution. Research in this field might inform policy-makers about determinants of behaviour of ship operators in the face of the law and might further the development of a comprehensive legal system for marine environmental protection. At the present stage of research, first tentative results from the qualitative phase may be examined and open research questions to be addressed in the quantitative phase as well as possible research designs for phase II may be discussed. Input from other researchers will be highly valuable at this point.

Optimal Maintenance Clustering for Rail Track Components Subject to Possession Capacity Constraints

This paper studies the optimal maintenance planning of preventive maintenance and renewal activities for components in a single railway track when the available time for maintenance is limited. The rail-track system consists of several types of components, such as rail, ballast, and switches with different preventive maintenance and renewal intervals. To perform maintenance or renewal on the track, a train free period for maintenance, called a possession, is required. Since a major possession directly affects the regular train schedule, maintenance and renewal activities are clustered as much as possible. In a highly dense and utilized railway network, the possession time on the track is critical since the demand for train operations is very high and a long possession has a severe impact on the regular train schedule. We present an optimization model and investigate the maintenance schedules with and without the possession capacity constraint. In addition, we also integrate the social-economic cost related to the effects of the maintenance time to the variable possession cost into the optimization model. A numerical example is provided to illustrate the model.

Optimal Opportunistic Maintenance Policy for a Two-Unit System

This paper presents a maintenance policy for a system consisting of two units. Unit 1 is gradually deteriorating and is subject to soft failure. Unit 2 has a general lifetime distribution and is subject to hard failure. Condition of unit 1 of the system is monitored periodically and it is considered as failed when its deterioration level reaches or exceeds a critical level N. At the failure time of unit 2 system is considered as failed, and unit 2 will be correctively replaced by the next inspection epoch. Unit 1 or 2 are preventively replaced when deterioration level of unit 1 or age of unit 2 exceeds the related preventive maintenance (PM) levels. At the time of corrective or preventive replacement of unit 2, there is an opportunity to replace unit 1 if its deterioration level reaches the opportunistic maintenance (OM) level. If unit 2 fails in an inspection interval, system stops operating although unit 1 has not failed. A mathematical model is derived to find the preventive and opportunistic replacement levels for unit 1 and preventive replacement age for unit 2, that minimize the long run expected average cost per unit time. The problem is formulated and solved in the semi-Markov decision process (SMDP) framework. Numerical example is provided to illustrate the performance of the proposed model and the comparison of the proposed model with an optimal policy without opportunistic maintenance level for unit 1 is carried out.

Structure and Power Struggle in Contemporary Nollywood: An Ethnographic Evaluation

Statements of facts have been made about Nollywood, a segment of the Nigerian film industry that has in recent times become phenomenal due largely to its quantity of production and specific production style. In the face of recent transformations reshaping the industry, matters have been arising which have not been given due academic attention from an industry player perspective. While re-addressing such issues like structure, policy and informality, this study benefits from a new perspective – that of a community member adopting participant observation to research into a familiar culture. With data drawn from an extensive ethnographic study of the industry, this paper examines these matters with an emphasis on structure and the industry’s overall political economy. Drawing from discourses on the new and old Nollywood labels and other current matters arising within the industry such as the MOPICON bill redraft, corporate financing and possibilities of regeneration, this paper examines structure and power struggle within Nollywood. These are championing regenerative processes that bring about formalization, professionalism and the quest for a transnational presence, which have only been superficially evaluated. Focused essentially on Nollywood’s political economy, this study critically analyses the transforming face of an informal industry, the consistent quest for structure, quality and standard, and issues of corporate sponsorship as possible trends of regeneration. It evaluates them as indicators of regeneration, questioning the possibilities of their sustenance in an industry experiencing increased interactions with the formal economy and an influx of young professionals. With findings that make sustained regeneration both certain (due to increased formal economy interaction) and uncertain (due to the dysfunctionality of the society and its political system), it concludes that the transforming face of the industry suggests impending gentrification of the industry.