Study of Rayleigh-Bénard-Brinkman Convection Using LTNE Model and Coupled, Real Ginzburg-Landau Equations

A local nonlinear stability analysis using a eight-mode
expansion is performed in arriving at the coupled amplitude equations
for Rayleigh-Bénard-Brinkman convection (RBBC) in the presence
of LTNE effects. Streamlines and isotherms are obtained in the
two-dimensional unsteady finite-amplitude convection regime. The
parameters’ influence on heat transport is found to be more
pronounced at small time than at long times. Results of the
Rayleigh-Bénard convection is obtained as a particular case of
the present study. Additional modes are shown not to significantly
influence the heat transport thus leading us to infer that five minimal
modes are sufficient to make a study of RBBC. The present problem
that uses rolls as a pattern of manifestation of instability is a needed
first step in the direction of making a very general non-local study of
two-dimensional unsteady convection. The results may be useful in
determining the preferred range of parameters’ values while making
rheometric measurements in fluids to ascertain fluid properties such
as viscosity. The results of LTE are obtained as a limiting case of
the results of LTNE obtained in the paper.




References:
[1] P. Vadasz, Free convection in porous media, in: Ingham, D. B., Pop,
I.(Eds.), Transport Phenomena in Porous Media, Elsevier., 1998.
[2] J. M. Crolet, Computation methods for flow and transport in porous
media, Kluwer Academic Press, 2000.
[3] M. Kaviany, Principles of Heat Transfer in Porous Media, Springer
Science and Business Media, New York, 2012.
[4] B. Straughan, Convection with Local Thermal Non-Equilibrium and
Microfluidic Effects, Springer, New York, 2015.
[5] D. B. Ingham and I. Pop, Transport Phenomena in Porous Media,
Elsevier, Oxford, 2005.
[6] K. Vafai, Handbook of Porous Media, CRC Press, London, 2005.
[7] D. A. Nield and Bejan, A., Convection in Porous Media, Springer Science
Business Media, New York, 2006.
[8] N. Banu and D. A. S. Rees, ”Onset of B´enard convection using a thermal
non-equilibrium model”, Int. J. Heat Mass Tran., 45, 2221-2228, 2002.
[9] Baytas, A. C., Pop, I.: Free convection in a square porous cavity using a
thermal nonequilibrium model”, Int. J. Therm. Sci., 41, 861-870, 2002.
[10] D. A. Nield, ”A note on local thermal non-equilibrium in structured
porous medium”, Int. J. Heat Mass Tran., 45, 4367-4368, 2002.
[11] A. Postelnicu and D. A. S. Rees, ”The onset of DarcyBrinkman
convection in a porous layer using a thermal nonequlibrium modelpart
I: stressfree boundaries”, Int. J. Energ. Res., 27, 961-973, 2003,.
[12] M. S. Malashetty, I. S. Shivakumara and S. Kulkarni, ”The onset of
Lapwood-Brinkman convection using a thermal non-equilibrium model”,
Int. J. Heat Mass Tran., 48, 1155-1163, 2005.
[13] Malashetty, M. S., Shivakumara, I. S. and S. Kulkarni, ”The onset of
convection in an anisotropic porous layer using a thermal non-equilibrium
model”, Transport Porous Med., 60, 199-215, 2005.
[14] P. Vadasz, ”Explicit conditions for local thermal equilibrium in porous
media heat conduction”, Transport Porous Med., 59, 341-355, 2005.
[15] D. A. S. Rees and Pop, I., ”Local thermal non-equilibrium in porous
medium convection”, Transport Porous Med. III.(ed D. B. Ingham, I. Pop)
147-173(2005).
[16] S. Govender and P. Vadasz, ”The effect of mechanical and thermal
anisotropy on the stability of gravity driven convection in rotating porous
media in the presence of thermal non-equilibrium”, Transport Porous Med.,
69, 55-66, 2007.
[17] D. A. S. Rees, A. P. Bassom and P. G. Sddheshwar, ”Local thermal
non-equilibrium effects arising from the injection of a hot fluid into a
porous medium”, J. Fluid Mech., 594, 379-398, 2008.
[18] A. Postelnicu, A, ”The onset of a Brinkman convection using a thermal
nonequilibrium model”, Part II. Int. J. Therm. Sci., 47, 1587-1594, 2008.
[19] A. V.Kuzentsov and D. A. Nield, ”Effect of local thermal
non-equilibrium on the onset of convection in a porous medium layer
saturated by a nanofluid”, Transport Porous Med., 83, 425-436 (2010).
[20] M. S. Malashetty and Mahantesh Swamy, ”Effect of rotation on the onset
of thermal convection in a sparsely packed porous layer using a thermal
non-equilibrium model”, Int. J. Heat and Mass Tran., 53(15), 3088-3011,
2010.
[21] I. S. Shivakumara, J. Lee, A. L. Mamatha and A. Ravisha, ”Effects
of thermal nonequilibrium and non-uniform temperature gradients on the
onset of convection in a heterogeneous porous medium”, Int. Commun.
Heat Mass, 38, 906-910,2011.
[22] A. Barletta and M. Celli, ”Local thermal non-equilibrium flow with
viscous dissipation in a plane horizontal porous layer”, Int. J. Thermal
Sci., 50, 53-60, 2011.
[23] I. S. Shivakumara, J. Lee, K. Vajravelu and A. L. Mamatha, ”Effects
of thermal nonequilibrium and non-uniform temperature gradients on the
onset of convection in a heterogeneous porous medium”, Int. Commun.
Heat Mass Transfer, 38, 906-910,2011.
[24] J. Lee, I. S. Shivakumara and A. L. Mamatha, ”Effect of nonuniform
temperature gradients on thermogravitational convection in a porous layer
using a thermal nonequilibrium model”, J. Porous Med., 14, 659-669, 2011.
[25] Bhadauria, B. S., Agarwal, S.: Convective transport in a nanofluid
saturated porous layer with thermal non equilibrium model. Transport
Porous Med., 88, 107-131(2011).
[26] S. Saravanan and T. Sivakumar, ”Onset of thermovibrational filtration
convection: departure from thermal equilibrium”, Phys. Rev. E., 84,
026307-1-13,2011.
[27] A. Barletta, D. A. S. Rees, ”Local thermal non-equilibrium effects in
the B´enard instability with isoflux boundary conditions”, Int. J. Heat Mass
Tran., 55, 384-394,2012.
[28] D. A. Nield, ”A note on local thermal non-equilibrium in porous media
near boundaries and interfaces”, Transport Porous Med., 95, 581-584,2012.
[29] P. M. Patil and D. A. S. Rees, ”Linear instability of a horizontal
thermal boundary layer formed by vertical throughflow in a porous
medium:The effect of local thermal non-equilibrium, Transport Porous
Med., 99, 207-227(2013).
[30] M. Celli, A. Barletta and L. Storesletten, ”Local thermal non-equilibrium
effects in the B´enard instability of a porous layer heated from below by a
uniform flux”, Int. J. Heat Mass Tran., 67, 902-912,2013.
[31] S. Saravanan and V. P. M. Senthil Nayaki, ”Thermorheological effect
on thermal nonequilibrium porous convection with heat generation”, Int.
J. Engg. Sci., 74, 55-64,2014.
[32] M. Celli, A. Barletta and L. Storesletten, ”Thermoconvective instability
and local thermal non-equilibrium in a porous layer with isoflux-isothermal
boundary conditions”, J. Physics (Conference series), 501, 012004,2014.
[33] M. Dehghan, M. S. Valipour, S. Saedodin, ”Perturbation Analysis of
the Local Thermal Non-equilibrium Condition in a Fluid-Saturated Porous
Medium Bounded by an Iso-thermal Channel”, Transport Porous Med.,
102, 139-152, 2014.
[34] M.Celli, H. Lagziri and M. Bezzazi, ”Local thermal non-equilibrium
effects in the Horton-Rogers-Lapwood problem with a free surface”, Int.
J. Thermal Sci., 116, 254-264, 2017.