Combined Microwaves and Microreactors Plant

A pilot plant for continuous flow microwave-assisted chemical reaction combined with microreactors was developed and water heating tests were conducted for evaluation of the developed plant. We developed a microwave apparatus having a single microwave generator that can heat reaction solutions in four reaction fields simultaneously in order to increase throughput. We also designed a four-branch waveguide using electromagnetic simulation, and found that the transmission efficiency at 99%. Finally, we developed the pilot plant using the developed microwave apparatus and conducted water heating tests. The temperatures in the respective reaction fields were controlled within ±1.1 K at 353.2 K. Moreover, the energy absorption rates by the water were about 90% in the respective reaction fields, whereas the energy absorption rate was about 40% when 100 cm3 of water was heated by a commercially available multimode microwave chemical reactor.

Effect of Conservation Agriculture on Maize Yield in the Transilvanian Plain, Romania

An experimental study is presented on the effect of Conservation Agriculture (CA) compared to Conventional Agriculture (ConvA) upon Maize Yield based on split-plot model. Two factors have been considered: A Factor-Fertilization with two variants: A1- N40P40 kg/ha and A2- N90P70 kg/ha; B Factor- Crop protection with 4 variants : B1- 4 treatments, B2-3 treatments, B3- 2 treatments and B4- 1 treatment. In comparison with conventional agriculture, CA determined lower maize yields. Fertilization is the key factor determining a yield gain of 973.58 kg/ha in ConvA and 1,123.33 kg/ha in CA. A reduced number of treatments determined a yield decline. The A-B interaction had a positive effect on maize yield when a larger amount of fertilizer and 4 or 3 treatments were applied in ConvA and a benefic in CA for highest fertilization level and 2 treatments. The B2A2 ConvA variant was the most efficient leading to 302.67 kg/ha gain while B3A2 CA variant brought 181.33 kg production gain.

Numerical Studies on Flow Field Characteristics of Cavity Based Scramjet Combustors

The flow field within the combustor of scramjet engine is very complex and poses a considerable challenge in the design and development of a supersonic combustor with an optimized geometry. In this paper comprehensive numerical studies on flow field characteristics of different cavity based scramjet combustors with transverse injection of hydrogen have been carried out for both non-reacting and reacting flows. The numerical studies have been carried out using a validated 2D unsteady, density based 1st-order implicit k-omega turbulence model with multi-component finite rate reacting species. The results show a wide variety of flow features resulting from the interactions between the injector flows, shock waves, boundary layers, and cavity flows. We conjectured that an optimized cavity is a good choice to stabilize the flame in the hypersonic flow, and it generates a recirculation zone in the scramjet combustor. We comprehended that the cavity based scramjet combustors having a bearing on the source of disturbance for the transverse jet oscillation, fuel/air mixing enhancement, and flameholding improvement. We concluded that cavity shape with backward facing step and 45o forward ramp is a good choice to get higher temperatures at the exit compared to other four models of scramjet combustors considered in this study.

Isolation of β-Sitosterol Diarabinoside from Rhizomes of Alpinia Galanga

Alpinia galanga is rhizome, generally known as Greater galangal and is selected for isolation of newer constituents accountable for various therapeutic activities. Present study is intended to isolate glycoside from Alpinia galanga rhizomes. Alpinia galanga methanolic extract was column chromatograph and eluted with ethyl acetate-methanol (99:1) to isolate compound β-Sitosterol Diarabinoside. Herein, the isolation and structural elucidation of new compound is described. Chemical investigation of methanolic extract of rhizomes of Alpinia galanga furnished a new compound β- Sitosterol Diarabinoside. The IR, NMR and MASS investigations of isolated compound confirmed its structure as β-Sitosterol Diarabinoside, which is isolated for the first time from a medicinal plant or any synthetic source.

Vapor Bubble Dynamics in Upward Subcooled Flow Boiling During Void Evolution

Bubble generation was observed using a high-speed camera in subcooled flow boiling at low void fraction. Constant heat flux was applied on one side of an upward rectangular channel to make heated test channel. Water as a working fluid from high subcooling to near saturation temperature was injected step by step to investigate bubble behavior during void development. Experiments were performed in two different pressures condition close to 2bar and 4bar. It was observed that in high subcooling when boiling was commenced, bubble after nucleation departed its origin and slid beside heated surface. In an observation window mean release frequency of bubble fb,mean, nucleation site Ns and mean bubble volume Vb,mean in each step of experiments were measured to investigate wall vaporization rate. It was found that in proximity of PNVG vaporization rate was increased significantly in compare with condensation rate which remained in low value.

The Evaluation of Low-Carbon Economy Jiangsu, China

Low-carbon economy means the energy conservation and emission reduction. How to measure and evaluate the regional low-carbon economy is an important problem which should be solved immediately. This paper proposed the eco-efficiency ratio based on the ecological efficiency to evaluate the current situation of the low-carbon economy in Jiangsu province and to analyze the efficiency of the low-carbon economy in Jiangsu and other provinces, compared both advantages and disadvantages. And then this paper put forward some advices for the government to formulate the correct development policy of low-carbon economy, to improve the technology innovation capacity and the efficiency of resource allocation.

Annual Changes in Some Qualitative Parameters of Groundwater in Shirvan Plain North East of Iran

Shirvan is located in plain in Northern Khorasan province north east of Iran and has semiarid to temperate climate. To investigate the annual changes in some qualitative parameters such as electrical conductivity, total dissolved solids and chloride concentrations which have increased during ten continuous years. Fourteen groundwater sources including deep as well as semi-deep wells were sampled and were analyzed using standard methods. The trends of obtained data were analyzed during these years and the effects of different factors on the changes in electrical conductivity, concentration of chloride and total dissolved solids were clarified. The results showed that the amounts of some qualitative parameters have been increased during 10 years time which has led to decrease in water quality. The results also showed that increased in urban populations as well as extensive industrialization in the studied area are the most important reasons to influence underground water quality. Furthermore decrease in water quantity is also evident due to more water utilization and occurrence of recent droughts in the region during recent years.

Hazard Rate Estimation of Temporal Point Process, Case Study: Earthquake Hazard Rate in Nusatenggara Region

Hazard rate estimation is one of the important topics in forecasting earthquake occurrence. Forecasting earthquake occurrence is a part of the statistical seismology where the main subject is the point process. Generally, earthquake hazard rate is estimated based on the point process likelihood equation called the Hazard Rate Likelihood of Point Process (HRLPP). In this research, we have developed estimation method, that is hazard rate single decrement HRSD. This method was adapted from estimation method in actuarial studies. Here, one individual associated with an earthquake with inter event time is exponentially distributed. The information of epicenter and time of earthquake occurrence are used to estimate hazard rate. At the end, a case study of earthquake hazard rate will be given. Furthermore, we compare the hazard rate between HRLPP and HRSD method.

Wireless Control for an Induction Motor

This paper discusses the development of wireless structure control of an induction motor scalar drives. This was realised up on the wireless WiFi networks. This strategy of control is ensured by the use of Wireless ad hoc networks and a virtual network interface based on VNC which is used to make possible to take the remote control of a PC connected on a wireless Ethernet network. Verification of the proposed strategy of control is provided by experimental realistic tests on scalar controlled induction motor drives. The experimental results of the implementations with their analysis are detailed.

Stereoselective Reduction of Amino Ketone with Sodium Borohydride in the Presence of Metal Chloride. A Simple Pathway to S-Propranolol

Propranolol is worldwide hypertension drug that is active in S-isomer. Patients must use this drug throughout their lives, and this action employsa significant level of expenditure. A simpler synthesis and lower cost can reduce the price for the patient. A sis pathway of S-propranolol starting from protection of (R,S)-propranolol with di-t-butyldicarbonate and then the product is oxidized with pyridiniumchlorochromate. The selective reduction of ketone occurrs with sodiumborohydride in the presence of metal chloride provided S-propranolol.

Efficient Design Optimization of Multi-State Flow Network for Multiple Commodities

The network of delivering commodities has been an important design problem in our daily lives and many transportation applications. The delivery performance is evaluated based on the system reliability of delivering commodities from a source node to a sink node in the network. The system reliability is thus maximized to find the optimal routing. However, the design problem is not simple because (1) each path segment has randomly distributed attributes; (2) there are multiple commodities that consume various path capacities; (3) the optimal routing must successfully complete the delivery process within the allowable time constraints. In this paper, we want to focus on the design optimization of the Multi-State Flow Network (MSFN) for multiple commodities. We propose an efficient approach to evaluate the system reliability in the MSFN with respect to randomly distributed path attributes and find the optimal routing subject to the allowable time constraints. The delivery rates, also known as delivery currents, of the path segments are evaluated and the minimal-current arcs are eliminated to reduce the complexity of the MSFN. Accordingly, the correct optimal routing is found and the worst-case reliability is evaluated. It has been shown that the reliability of the optimal routing is at least higher than worst-case measure. Two benchmark examples are utilized to demonstrate the proposed method. The comparisons between the original and the reduced networks show that the proposed method is very efficient.

Aeroelasticity Analysis of Rotor Blades in the First Two Stages of Axial Compressor in the Case of a Bird Strike

A bird strike can cause damage to stationary and rotating aircraft engine parts, especially the engine fan. This paper presents a bird strike simulated by blocking four stator blade passages. It includes the numerical results of the unsteady lowfrequency aerodynamic forces and the aeroelastic behaviour caused by a non-symmetric upstream flow affecting the first two rotor blade stages in the axial-compressor of a jet engine. The obtained results show that disturbances in the engine inlet strongly influence the level of unsteady forces acting on the rotor blades. With a partially blocked inlet the whole spectrum of low-frequency harmonics is observed. Such harmonics can lead to rotor blade damage. The lowfrequency amplitudes are higher in the first stage rotor blades than in the second stage. In both rotor blades stages flutter appeared as a result of bird strike.

pth Moment Exponential Synchronization of a Class of Chaotic Neural Networks with Mixed Delays

This paper studies the pth moment exponential synchronization of a class of stochastic neural networks with mixed delays. Based on Lyapunov stability theory, by establishing a new integrodifferential inequality with mixed delays, several sufficient conditions have been derived to ensure the pth moment exponential stability for the error system. The criteria extend and improve some earlier results. One numerical example is presented to illustrate the validity of the main results.

Seismic Behaviour of Steel Frames Investigation with Knee Brace Based on Pushover Analysis

The knee bracing steel frame (KBF) is a new kind of energy dissipating frame, which combines excellent ductility and lateral stiffness. In this framing system, a special form of diagonal brace connected to a knee element instead of beam-column joint, is investigated. Recently, a similar system was proposed and named as chevron knee bracing system (CKB) which in comparison with the former system has a better energy absorption characteristic and at the same time retains the elastic nature of the structures. Knee bracing can provide a stiffer bracing system but reduces the ductility of the steel frame. Chevron knee bracing can be employed to provide the desired ductility level for a design. In this article, relation between seismic performance and structural parameters of the two above mentioned systems are investigated and compared. Frames with similar dimensions but various heights in both systems are designed according to Iranian code of practice for seismic resistant design of building, and then based on a non-linear push over static analysis; the seismic parameters such as behavior factor and performance levels are compared.

Development of a Novel Low-Cost Flight Simulator for Pilot Training

A novel low-cost flight simulator with the development goals cost effectiveness and high performance has been realized for meeting the huge pilot training needs of airlines. The simulator consists of an aircraft dynamics model, a sophisticated designed low-profile electrical driven motion system with a subsided cabin, a mixed reality based semi-virtual cockpit system, a control loading system and some other subsystems. It shows its advantages over traditional flight simulator by its features achieved with open architecture, software solutions and low-cost hardware.

Knowledge Management Model for Research Projects Masters Program

This paper presents the adaptation of the knowledge management model and intellectual capital measurement NOVA to the needs of work or research project must be developed when conducting a program of graduate-level master. Brackets are added in each of the blocks which is represented in the original model NOVA and which allows to represent those involved in each of these.

Advancing the Theory of Planned Behavior within Dietary and Physical Domains among Type 2 Diabetics: A Mixed Methods Approach

Many studies have applied the Theory of Planned Behavior (TPB) in predicting health behaviors among unique populations. However, a new paradigm is emerging where focus is now directed to modification and expansion of the TPB model rather than utilization of the traditional theory. This review proposes new models modified from the Theory of Planned Behavior and suggest an appropriate study design that can be used to test the models within physical activity and dietary practice domains among Type 2 diabetics in Kenya. The review was conducted by means of literature search in the field of nutrition behavior, health psychology and mixed methods using predetermined key words. The results identify pre-intention and post intention gaps within the TPB model that need to be filled. Additional psychosocial factors are proposed to be included in the TPB model to generate new models and the efficacy of these models tested using mixed methods design.

SC-LSH: An Efficient Indexing Method for Approximate Similarity Search in High Dimensional Space

Locality Sensitive Hashing (LSH) is one of the most promising techniques for solving nearest neighbour search problem in high dimensional space. Euclidean LSH is the most popular variation of LSH that has been successfully applied in many multimedia applications. However, the Euclidean LSH presents limitations that affect structure and query performances. The main limitation of the Euclidean LSH is the large memory consumption. In order to achieve a good accuracy, a large number of hash tables is required. In this paper, we propose a new hashing algorithm to overcome the storage space problem and improve query time, while keeping a good accuracy as similar to that achieved by the original Euclidean LSH. The Experimental results on a real large-scale dataset show that the proposed approach achieves good performances and consumes less memory than the Euclidean LSH.

Combining Diverse Neural Classifiers for Complex Problem Solving: An ECOC Approach

Combining classifiers is a useful method for solving complex problems in machine learning. The ECOC (Error Correcting Output Codes) method has been widely used for designing combining classifiers with an emphasis on the diversity of classifiers. In this paper, in contrast to the standard ECOC approach in which individual classifiers are chosen homogeneously, classifiers are selected according to the complexity of the corresponding binary problem. We use SATIMAGE database (containing 6 classes) for our experiments. The recognition error rate in our proposed method is %10.37 which indicates a considerable improvement in comparison with the conventional ECOC and stack generalization methods.

Evaluation of Classifiers Based On I2C Distance for Action Recognition

Naive Bayes Nearest Neighbor (NBNN) and its variants, i,e., local NBNN and the NBNN kernels, are local feature-based classifiers that have achieved impressive performance in image classification. By exploiting instance-to-class (I2C) distances (instance means image/video in image/video classification), they avoid quantization errors of local image descriptors in the bag of words (BoW) model. However, the performances of NBNN, local NBNN and the NBNN kernels have not been validated on video analysis. In this paper, we introduce these three classifiers into human action recognition and conduct comprehensive experiments on the benchmark KTH and the realistic HMDB datasets. The results shows that those I2C based classifiers consistently outperform the SVM classifier with the BoW model.