Software Maintenance Severity Prediction for Object Oriented Systems

As the majority of faults are found in a few of its modules so there is a need to investigate the modules that are affected severely as compared to other modules and proper maintenance need to be done in time especially for the critical applications. As, Neural networks, which have been already applied in software engineering applications to build reliability growth models predict the gross change or reusability metrics. Neural networks are non-linear sophisticated modeling techniques that are able to model complex functions. Neural network techniques are used when exact nature of input and outputs is not known. A key feature is that they learn the relationship between input and output through training. In this present work, various Neural Network Based techniques are explored and comparative analysis is performed for the prediction of level of need of maintenance by predicting level severity of faults present in NASA-s public domain defect dataset. The comparison of different algorithms is made on the basis of Mean Absolute Error, Root Mean Square Error and Accuracy Values. It is concluded that Generalized Regression Networks is the best algorithm for classification of the software components into different level of severity of impact of the faults. The algorithm can be used to develop model that can be used for identifying modules that are heavily affected by the faults.

The Direct and Indirect Effects of the Achievement Motivation on Nurturing Intellectual Giftedness

Achievement motivation is believed to promote giftedness attracting people to invest in many programs to adopt gifted students providing them with challenging activities. Intellectual giftedness is founded on the fluid intelligence and extends to more specific abilities through the growth and inputs from the achievement motivation. Acknowledging the roles played by the motivation in the development of giftedness leads to an effective nurturing of gifted individuals. However, no study has investigated the direct and indirect effects of the achievement motivation and fluid intelligence on intellectual giftedness. Thus, this study investigated the contribution of motivation factors to giftedness development by conducting tests of fluid intelligence using Cattell Culture Fair Test (CCFT) and analytical abilities using culture reduced test items covering problem solving, pattern recognition, audio-logic, audio-matrices, and artificial language, and self report questionnaire for the motivational factors. A number of 180 highscoring students were selected using CCFT from a leading university in Malaysia. Structural equation modeling was employed using Amos V.16 to determine the direct and indirect effects of achievement motivation factors (self confidence, success, perseverance, competition, autonomy, responsibility, ambition, and locus of control) on the intellectual giftedness. The findings showed that the hypothesized model fitted the data, supporting the model postulates and showed significant and strong direct and indirect effects of the motivation and fluid intelligence on the intellectual giftedness.

Multi-Agents Coordination Model in Inter- Organizational Workflow: Applying in Egovernment

Inter-organizational Workflow (IOW) is commonly used to support the collaboration between heterogeneous and distributed business processes of different autonomous organizations in order to achieve a common goal. E-government is considered as an application field of IOW. The coordination of the different organizations is the fundamental problem in IOW and remains the major cause of failure in e-government projects. In this paper, we introduce a new coordination model for IOW that improves the collaboration between government administrations and that respects IOW requirements applied to e-government. For this purpose, we adopt a Multi-Agent approach, which deals more easily with interorganizational digital government characteristics: distribution, heterogeneity and autonomy. Our model integrates also different technologies to deal with the semantic and technologic interoperability. Moreover, it conserves the existing systems of government administrations by offering a distributed coordination based on interfaces communication. This is especially applied in developing countries, where administrations are not necessary equipped with workflow systems. The use of our coordination techniques allows an easier migration for an e-government solution and with a lower cost. To illustrate the applicability of the proposed model, we present a case study of an identity card creation in Tunisia.

Radar Hydrology: New Z/R Relationships for Klang River Basin Malaysia based on Rainfall Classification

The use of radar in Quantitative Precipitation Estimation (QPE) for radar-rainfall measurement is significantly beneficial. Radar has advantages in terms of high spatial and temporal condition in rainfall measurement and also forecasting. In Malaysia, radar application in QPE is still new and needs to be explored. This paper focuses on the Z/R derivation works of radarrainfall estimation based on rainfall classification. The works developed new Z/R relationships for Klang River Basin in Selangor area for three different general classes of rain events, namely low (10mm/hr, 30mm/hr) and also on more specific rain types during monsoon seasons. Looking at the high potential of Doppler radar in QPE, the newly formulated Z/R equations will be useful in improving the measurement of rainfall for any hydrological application, especially for flood forecasting.

Interactive Model Based On an Extended CPN

The UML modeling of complex distributed systems often is a great challenge due to the large amount of parallel real-time operating components. In this paper the problems of verification of such systems are discussed. ECPN, an Extended Colored Petri Net is defined to formally describe state transitions of components and interactions among components. The relationship between sequence diagrams and Free Choice Petri Nets is investigated. Free Choice Petri Net theory helps verifying the liveness of sequence diagrams. By converting sequence diagrams to ECPNs and then comparing behaviors of sequence diagram ECPNs and statecharts, the consistency among models is analyzed. Finally, a verification process for an example model is demonstrated.

Incorporation Mechanism of Stabilizing Simulated Lead-Laden Sludge in Aluminum-Rich Ceramics

This study investigated a strategy of blending lead-laden sludge and Al-rich precursors to reduce the release of metals from the stabilized products. Using PbO as the simulated lead-laden sludge to sinter with γ-Al2O3 by Pb:Al molar ratios of 1:2 and 1:12, PbAl2O4 and PbAl12O19 were formed as final products during the sintering process, respectively. By firing the PbO + γ-Al2O3 mixtures with different Pb/Al molar ratios at 600 to 1000 °C, the lead transformation was determined through X-ray diffraction (XRD) data. In Pb/Al molar ratio of 1/2 system, the formation of PbAl2O4 is initiated at 700 °C, but an effective formation was observed above 750 °C. An intermediate phase, Pb9Al8O21, was detected in the temperature range of 800-900 °C. However, different incorporation behavior for sintering PbO with Al-rich precursors at a Pb/Al molar ratio of 1/12 was observed during the formation of PbAl12O19 in this system. In the sintering process, both temperature and time effect on the formation of PbAl2O4 and PbAl12O19 phases were estimated. Finally, a prolonged leaching test modified from the U.S. Environmental Protection Agency-s toxicity characteristic leaching procedure (TCLP) was used to evaluate the durability of PbO, Pb9Al8O21, PbAl2O4 and PbAl12O19 phases. Comparison for the leaching results of the four phases demonstrated the higher intrinsic resistance of PbAl12O19 against acid attack.

Defluoridation of Water by Schwertmannite

In the present study Schwertmannite (an iron oxide hydroxide) is selected as an adsorbent for defluoridation of water. The adsorbent was prepared by wet chemical process and was characterized by SEM, XRD and BET. The fluoride adsorption efficiency of the prepared adsorbent was determined with respect to contact time, initial fluoride concentration, adsorbent dose and pH of the solution. The batch adsorption data revealed that the fluoride adsorption efficiency was highly influenced by the studied factors. Equilibrium was attained within one hour of contact time indicating fast kinetics and the adsorption data followed pseudo second order kinetic model. Equilibrium isotherm data fitted to both Langmuir and Freundlich isotherm models for a concentration range of 5-30 mg/L. The adsorption system followed Langmuir isotherm model with maximum adsorption capacity of 11.3 mg/g. The high adsorption capacity of Schwertmannite points towards the potential of this adsorbent for fluoride removal from aqueous medium.

Integrating Technology into Mathematics Education: A Case Study from Primary Mathematics Students Teachers

The purpose of the study is to determine the primary mathematics student teachers- views related to use instructional technology tools in course of the learning process and to reveal how the sample presentations towards different mathematical concepts affect their views. This is a qualitative study involving twelve mathematics students from a public university. The data gathered from two semi-structural interviews. The first one was realized in the beginning of the study. After that the representations prepared by the researchers were showed to the participants. These representations contain animations, Geometer-s Sketchpad activities, video-clips, spreadsheets, and power-point presentations. The last interview was realized at the end of these representations. The data from the interviews and content analyses were transcribed and read and reread to explore the major themes. Findings revealed that the views of the students changed in this process and they believed that the instructional technology tools should be used in their classroom.

CFD Simulations of Flow in Capillary Flow Liquid Acquisition Device Channel

Future space vehicles will require the use of non-toxic, cryogenic propellants, because of the performance advantages over the toxic hypergolic propellants and also because of the environmental and handling concerns. A prototypical capillary flow liquid acquisition device (LAD) for cryogenic propellants was fabricated with a mesh screen, covering a rectangular flow channel with a cylindrical outlet tube, and was tested with liquid oxygen (LOX). In order to better understand the performance in various gravity environments and orientations with different submersion depths of the LAD, a series of computational fluid dynamics (CFD) simulations of LOX flow through the LAD screen channel, including horizontally and vertically submersions of the LAD channel assembly at normal gravity environment was conducted. Gravity effects on the flow field in LAD channel are inspected and analyzed through comparing the simulations.

The Corporate Integration of Highly Skilled Professionals - A Social Capital Perspective

Not with standing the importance of foreign highly skilled professionals for host economies, there is a paucity of research studies investigating the role of the corporate social context during the integration process. This research aims to address this paucity by exploring the role of social capital in the integration of foreign health professionals. It does so by using a qualitative research approach. In this pilot study the hospital sector forms this study-s sample and interviews were conducted with HR managers, foreign health professionals and external HR consultants. It was found that most of the participating hospitals had not established specific HR practices and had only partly linked the development of organisational social capital with a successful integration process. This research contributes, for example, to the HR literature on the integration of self-initiated expatriates by analysing the role of HRM in generating organisational social capital needed for a successful integration process.

Use of Caffeine and Human Pharmaceutical Compounds to Identify Sewage Contamination

Fecal coliform bacteria are widely used as indicators of sewage contamination in surface water. However, there are some disadvantages in these microbial techniques including time consuming (18-48h) and inability in discriminating between human and animal fecal material sources. Therefore, it is necessary to seek a more specific indicator of human sanitary waste. In this study, the feasibility was investigated to apply caffeine and human pharmaceutical compounds to identify the human-source contamination. The correlation between caffeine and fecal coliform was also explored. Surface water samples were collected from upstream, middle-stream and downstream points respectively, along Rochor Canal, as well as 8 locations of Marina Bay. Results indicate that caffeine is a suitable chemical tracer in Singapore because of its easy detection (in the range of 0.30-2.0 ng/mL), compared with other chemicals monitored. Relative low concentrations of human pharmaceutical compounds (< 0.07 ng/mL) in Rochor Canal and Marina Bay water samples make them hard to be detected and difficult to be chemical tracer. However, their existence can help to validate sewage contamination. In addition, it was discovered the high correlation exists between caffeine concentration and fecal coliform density in the Rochor Canal water samples, demonstrating that caffeine is highly related to the human-source contamination.

Ensembling Classifiers – An Application toImage Data Classification from Cherenkov Telescope Experiment

Ensemble learning algorithms such as AdaBoost and Bagging have been in active research and shown improvements in classification results for several benchmarking data sets with mainly decision trees as their base classifiers. In this paper we experiment to apply these Meta learning techniques with classifiers such as random forests, neural networks and support vector machines. The data sets are from MAGIC, a Cherenkov telescope experiment. The task is to classify gamma signals from overwhelmingly hadron and muon signals representing a rare class classification problem. We compare the individual classifiers with their ensemble counterparts and discuss the results. WEKA a wonderful tool for machine learning has been used for making the experiments.

Application of Smooth Ergodic Hidden Markov Model in Text to Speech Systems

In developing a text-to-speech system, it is well known that the accuracy of information extracted from a text is crucial to produce high quality synthesized speech. In this paper, a new scheme for converting text into its equivalent phonetic spelling is introduced and developed. This method is applicable to many applications in text to speech converting systems and has many advantages over other methods. The proposed method can also complement the other methods with a purpose of improving their performance. The proposed method is a probabilistic model and is based on Smooth Ergodic Hidden Markov Model. This model can be considered as an extension to HMM. The proposed method is applied to Persian language and its accuracy in converting text to speech phonetics is evaluated using simulations.

An Investigation to Effective Parameters on the Damage of Dual Phase Steels by Acoustic Emission Using Energy Ratio

Dual phase steels (DPS)s have a microstructure consisting of a hard second phase called Martensite in the soft Ferrite matrix. In recent years, there has been interest in dual-phase steels, because the application of these materials has made significant usage; particularly in the automotive sector Composite microstructure of (DPS)s exhibit interesting characteristic mechanical properties such as continuous yielding, low yield stress to tensile strength ratios(YS/UTS), and relatively high formability; which offer advantages compared with conventional high strength low alloy steels(HSLAS). The research dealt with the characterization of damage in (DPS)s. In this study by review the mechanisms of failure due to volume fraction of martensite second phase; a new method is introduced to identifying the mechanisms of failure in the various phases of these types of steels. In this method the acoustic emission (AE) technique was used to detect damage progression. These failure mechanisms consist of Ferrite-Martensite interface decohesion and/or martensite phase fracture. For this aim, dual phase steels with different volume fraction of martensite second phase has provided by various heat treatment methods on a low carbon steel (0.1% C), and then AE monitoring is used during tensile test of these DPSs. From AE measurements and an energy ratio curve elaborated from the value of AE energy (it was obtained as the ratio between the strain energy to the acoustic energy), that allows detecting important events, corresponding to the sudden drops. These AE signals events associated with various failure mechanisms are classified for ferrite and (DPS)s with various amount of Vm and different martensite morphology. It is found that AE energy increase with increasing Vm. This increasing of AE energy is because of more contribution of martensite fracture in the failure of samples with higher Vm. Final results show a good relationship between the AE signals and the mechanisms of failure.

Hot Workability of High Strength Low Alloy Steels

The hot deformation behavior of high strength low alloy (HSLA) steels with different chemical compositions under hot working conditions in the temperature range of 900 to 1100℃ and strain rate range from 0.1 to 10 s-1 has been studied by performing a series of hot compression tests. The dynamic materials model has been employed for developing the processing maps, which show variation of the efficiency of power dissipation with temperature and strain rate. Also the Kumar-s model has been used for developing the instability map, which shows variation of the instability for plastic deformation with temperature and strain rate. The efficiency of power dissipation increased with decreasing strain rate and increasing temperature in the steel with higher Cr and Ti content. High efficiency of power dissipation over 20 % was obtained at a finite strain level of 0.1 under the conditions of strain rate lower than 1 s-1 and temperature higher than 1050 ℃ . Plastic instability was expected in the regime of temperatures lower than 1000 ℃ and strain rate lower than 0.3 s-1. Steel with lower Cr and Ti contents showed high efficiency of power dissipation at higher strain rate and lower temperature conditions.

Achieving Fair Share Objectives via Goal-Oriented Parallel Computer Job Scheduling Policies

Fair share is one of the scheduling objectives supported on many production systems. However, fair share has been shown to cause performance problems for some users, especially the users with difficult jobs. This work is focusing on extending goaloriented parallel computer job scheduling policies to cover the fair share objective. Goal-oriented parallel computer job scheduling policies have been shown to achieve good scheduling performances when conflicting objectives are required. Goal-oriented policies achieve such good performance by using anytime combinatorial search techniques to find a good compromised schedule within a time limit. The experimental results show that the proposed goal-oriented parallel computer job scheduling policy (namely Tradeofffs( Tw:avgX)) achieves good scheduling performances and also provides good fair share performance.

Traffic Signs

Road signs are the elements of roads with a lot of influence in driver-s behavior. So that signals can fulfill its function, they must overcome visibility and durability requirements, particularly needed at night, when the coefficient of retroreflection becomes a decisive factor in ensuring road safety. Accepting that the visibility of the signage has implications for people-s safety, we understand the importance to fulfill its function: to foster the highest standards of service and safety in drivers. The usual conditions of perception of any sign are determined by: age of the driver, reflective material, luminosity, vehicle speed and emplacement. In this way, this paper evaluates the different signals to increase the safety road.

Application of Neural Networks for 24-Hour-Ahead Load Forecasting

One of the most important requirements for the operation and planning activities of an electrical utility is the prediction of load for the next hour to several days out, known as short term load forecasting. This paper presents the development of an artificial neural network based short-term load forecasting model. The model can forecast daily load profiles with a load time of one day for next 24 hours. In this method can divide days of year with using average temperature. Groups make according linearity rate of curve. Ultimate forecast for each group obtain with considering weekday and weekend. This paper investigates effects of temperature and humidity on consuming curve. For forecasting load curve of holidays at first forecast pick and valley and then the neural network forecast is re-shaped with the new data. The ANN-based load models are trained using hourly historical. Load data and daily historical max/min temperature and humidity data. The results of testing the system on data from Yazd utility are reported.

Proteolytic Dedradation of Anchovy (Spolephorus spp.) Proteins by Halophilic Proteinase from Halobacillus sp. SR5-3

The halophilic proteinase showed a maximal activity at 50°C and pH 9~10, in 20% NaCl and was highly stabilized by NaCl. It was able to hydrolyse natural actomyosin (NAM), collagen and anchovy protein. For NAM hydrolysis, the myosin heavy chain was completely digested by halophilic proteinase as evidenced by the lowest band intensity remaining, but partially hydrolysed actin. The SR5-3 proteinase was also capable hydrolyzing two major components of collagen, β- and α-compounds, effectively. The degree of hydrolysis (DH) of the halophilic proteinase and commercial proteinases (Novozyme, Neutrase, chymotrypsin and Flavourzyme) on the anchovy protein, were compared, and it was found that the proteinase showed a greater degree of hydrolysis towards anchovy protein than that from commercial proteinases. DH of halophilic proteinase was sharply enhanced according to the increase in the concentration of enzyme from 0.035 U to 0.105 U. The results warranting that the acceleration of the production of fish sauce with higher quality, may be achieved by adding of the halophilic proteinase from this bacterium.

Polymerisation Shrinkage of Light−Cured Hydroxyapatite (HA)−Reinforced Dental Composites

The dental composites are preferably used as filling materials due to their esthetic appearances. Nevertheless one of the major problems, during the application of the dental composites, is shape change named as “polymerisation shrinkage" affecting clinical success of the dental restoration while photo-polymerisation. Polymerisation shrinkage of composites arises basically from the formation of a polymer due to the monomer transformation which composes of an organic matrix phase. It was sought, throughout this study, to detect and evaluate the structural polymerisation shrinkage of prepared dental composites in order to optimize the effects of various fillers included in hydroxyapatite (HA)-reinforced dental composites and hence to find a means to modify the properties of these dental composites prepared with defined parameters. As a result, the shrinkage values of the experimental dental composites were decreased by increasing the filler content of composites and the composition of different fillers used had effect on the shrinkage of the prepared composite systems.