Augmentation Opportunity of Transmission Control Protocol Performance in Wireless Networks and Cellular Systems

The advancement in wireless technology with the wide use of mobile devices have drawn the attention of the research and technological communities towards wireless environments, such as Wireless Local Area Networks (WLANs), Wireless Wide Area Networks (WWANs), and mobile systems and ad-hoc networks. Unfortunately, wired and wireless networks are expressively different in terms of link reliability, bandwidth, and time of propagation delay and by adapting new solutions for these enhanced telecommunications, superior quality, efficiency, and opportunities will be provided where wireless communications were otherwise unfeasible. Some researchers define 4G as a significant improvement of 3G, where current cellular network’s issues will be solved and data transfer will play a more significant role. For others, 4G unifies cellular and wireless local area networks, and introduces new routing techniques, efficient solutions for sharing dedicated frequency bands, and an increased mobility and bandwidth capacity. This paper discusses the possible solutions and enhancements probabilities that proposed to improve the performance of Transmission Control Protocol (TCP) over different wireless networks and also the paper investigated each approach in term of advantages and disadvantages.

Phosphorus Supplementation of Ammoniated Rice Straw on Rumen Fermentability, Syntesised Microbial Protein and Degradabilityin Vitro

The effect of phosphorus supplementation of ammoniated rice straw was studied. The in vitro experiment was carried out following the first stage of Tilley and Terry method. The treatments consisting of four diets were A = 50% ammoniated rice straw + 50% concentrate (control), B = A + 0.2% Phosphor (P) supplement, C = A + 0.4% Phosphor (P) supplement, and D = A + 0.6% Phosphor (P) supplement of dry matter. Completely randomized design was used as the experimental design with differences among treatment means were examined using Duncan multiple range test. Variables measured were total bacterial and cellulolytic bacterial population, cellulolytic enzyme activity, ammonia (NH3) and volatile fatty acid (VFA) concentrations, as fermentability indicators and synthesized microbial protein, as well as degradability indicators including dry matter (DM), organic matter (OM), neutral detergent fibre (NDF), acid detergent fibre (ADF) and cellulose. The results indicated that fermentability and degradability of diets consisting ammoniated rice straw with P supplementation were significantly higher than the control diet (P< 0.05). It is concluded that P supplementation is important to improve fermentability and degradability of rations containing ammoniated RS and concentrate. In terms of the most effective level of P supplementation occurred at a supplementation rate of 0.4% of dry matter.

Fractal Analysis on Human Colonic Pressure Activities based on the Box-counting Method

The colonic tissue is a complicated dynamic system and the colonic activities it generates are composed of irregular segmental waves, which are referred to as erratic fluctuations or spikes. They are also highly irregular with subunit fractal structure. The traditional time-frequency domain statistics like the averaged amplitude, the motility index and the power spectrum, etc. are insufficient to describe such fluctuations. Thus the fractal box-counting dimension is proposed and the fractal scaling behaviors of the human colonic pressure activities under the physiological conditions are studied. It is shown that the dimension of the resting activity is smaller than that of the normal one, whereas the clipped version, which corresponds to the activity of the constipation patient, shows with higher fractal dimension. It may indicate a practical application to assess the colonic motility, which is often indicated by the colonic pressure activity.

A Balanced Cost Cluster-Heads Selection Algorithm for Wireless Sensor Networks

This paper focuses on reducing the power consumption of wireless sensor networks. Therefore, a communication protocol named LEACH (Low-Energy Adaptive Clustering Hierarchy) is modified. We extend LEACHs stochastic cluster-head selection algorithm by a modifying the probability of each node to become cluster-head based on its required energy to transmit to the sink. We present an efficient energy aware routing algorithm for the wireless sensor networks. Our contribution consists in rotation selection of clusterheads considering the remoteness of the nodes to the sink, and then, the network nodes residual energy. This choice allows a best distribution of the transmission energy in the network. The cluster-heads selection algorithm is completely decentralized. Simulation results show that the energy is significantly reduced compared with the previous clustering based routing algorithm for the sensor networks.

An Efficient Classification Method for Inverse Synthetic Aperture Radar Images

This paper proposes an efficient method to classify inverse synthetic aperture (ISAR) images. Because ISAR images can be translated and rotated in the 2-dimensional image place, invariance to the two factors is indispensable for successful classification. The proposed method achieves invariance to translation and rotation of ISAR images using a combination of two-dimensional Fourier transform, polar mapping and correlation-based alignment of the image. Classification is conducted using a simple matching score classifier. In simulations using the real ISAR images of five scaled models measured in a compact range, the proposed method yields classification ratios higher than 97 %.

Controller Design for Euler-Bernoulli Smart Structures Using Robust Decentralized POF via Reduced Order Modeling

This paper features the proposed modeling and design of a Robust Decentralized Periodic Output Feedback (RDPOF) control technique for the active vibration control of smart flexible multimodel Euler-Bernoulli cantilever beams for a multivariable (MIMO) case by retaining the first 6 vibratory modes. The beam structure is modeled in state space form using the concept of piezoelectric theory, the Euler-Bernoulli beam theory and the Finite Element Method (FEM) technique by dividing the beam into 4 finite elements and placing the piezoelectric sensor / actuator at two finite element locations (positions 2 and 4) as collocated pairs, i.e., as surface mounted sensor / actuator, thus giving rise to a multivariable model of the smart structure plant with two inputs and two outputs. Five such multivariable models are obtained by varying the dimensions (aspect ratios) of the aluminum beam, thus giving rise to a multimodel of the smart structure system. Using model order reduction technique, the reduced order model of the higher order system is obtained based on dominant eigen value retention and the method of Davison. RDPOF controllers are designed for the above 5 multivariable-multimodel plant. The closed loop responses with the RDPOF feedback gain and the magnitudes of the control input are observed and the performance of the proposed multimodel smart structure system with the controller is evaluated for vibration control.

Methods for Case Maintenance in Case-Based Reasoning

Case-Based Reasoning (CBR) is one of machine learning algorithms for problem solving and learning that caught a lot of attention over the last few years. In general, CBR is composed of four main phases: retrieve the most similar case or cases, reuse the case to solve the problem, revise or adapt the proposed solution, and retain the learned cases before returning them to the case base for learning purpose. Unfortunately, in many cases, this retain process causes the uncontrolled case base growth. The problem affects competence and performance of CBR systems. This paper proposes competence-based maintenance method based on deletion policy strategy for CBR. There are three main steps in this method. Step 1, formulate problems. Step 2, determine coverage and reachability set based on coverage value. Step 3, reduce case base size. The results obtained show that this proposed method performs better than the existing methods currently discussed in literature.

A Comparative Study of Fine Grained Security Techniques Based on Data Accessibility and Inference

This paper analyzes different techniques of the fine grained security of relational databases for the two variables-data accessibility and inference. Data accessibility measures the amount of data available to the users after applying a security technique on a table. Inference is the proportion of information leakage after suppressing a cell containing secret data. A row containing a secret cell which is suppressed can become a security threat if an intruder generates useful information from the related visible information of the same row. This paper measures data accessibility and inference associated with row, cell, and column level security techniques. Cell level security offers greatest data accessibility as it suppresses secret data only. But on the other hand, there is a high probability of inference in cell level security. Row and column level security techniques have least data accessibility and inference. This paper introduces cell plus innocent security technique that utilizes the cell level security method but suppresses some innocent data to dodge an intruder that a suppressed cell may not necessarily contain secret data. Four variations of the technique namely cell plus innocent 1/4, cell plus innocent 2/4, cell plus innocent 3/4, and cell plus innocent 4/4 respectively have been introduced to suppress innocent data equal to 1/4, 2/4, 3/4, and 4/4 percent of the true secret data inside the database. Results show that the new technique offers better control over data accessibility and inference as compared to the state-of-theart security techniques. This paper further discusses the combination of techniques together to be used. The paper shows that cell plus innocent 1/4, 2/4, and 3/4 techniques can be used as a replacement for the cell level security.

Information Delivery and Advanced Traffic Information Systems in Istanbul

In this paper, we focused primarily on Istanbul data that is gathered by using intelligent transportation systems (ITS), and considered the developments in traffic information delivery and future applications that are being planned for implementation. Since traffic congestion is increasing and travel times are becoming less consistent and less predictable, traffic information delivery has become a critical issue. Considering the fuel consumption and wasted time in traffic, advanced traffic information systems are becoming increasingly valuable which enables travelers to plan their trips more accurately and easily.

Real-time ROI Acquisition for Unsupervised and Touch-less Palmprint

In this paper we proposed a novel method to acquire the ROI (Region of interest) of unsupervised and touch-less palmprint captured from a web camera in real-time. We use Viola-Jones approach and skin model to get the target area in real time. Then an innovative course-to-fine approach to detect the key points on the hand is described. A new algorithm is used to find the candidate key points coarsely and quickly. In finely stage, we verify the hand key points with the shape context descriptor. To make the user much comfortable, it can process the hand image with different poses, even the hand is closed. Experiments show promising result by using the proposed method in various conditions.

Elimination Noise by Adaptive Wavelet Threshold

Due to some reasons, observed images are degraded which are mainly caused by noise. Recently image denoising using the wavelet transform has been attracting much attention. Waveletbased approach provides a particularly useful method for image denoising when the preservation of edges in the scene is of importance because the local adaptivity is based explicitly on the values of the wavelet detail coefficients. In this paper, we propose several methods of noise removal from degraded images with Gaussian noise by using adaptive wavelet threshold (Bayes Shrink, Modified Bayes Shrink and Normal Shrink). The proposed thresholds are simple and adaptive to each subband because the parameters required for estimating the threshold depend on subband data. Experimental results show that the proposed thresholds remove noise significantly and preserve the edges in the scene.

Current Distribution and Cathode Flooding Prediction in a PEM Fuel Cell

Non-uniform current distribution in polymer electrolyte membrane fuel cells results in local over-heating, accelerated ageing, and lower power output than expected. This issue is very critical when fuel cell experiences water flooding. In this work, the performance of a PEM fuel cell is investigated under cathode flooding conditions. Two-dimensional partially flooded GDL models based on the conservation laws and electrochemical relations are proposed to study local current density distributions along flow fields over a wide range of cell operating conditions. The model results show a direct association between cathode inlet humidity increases and that of average current density but the system becomes more sensitive to flooding. The anode inlet relative humidity shows a similar effect. Operating the cell at higher temperatures would lead to higher average current densities and the chance of system being flooded is reduced. In addition, higher cathode stoichiometries prevent system flooding but the average current density remains almost constant. The higher anode stoichiometry leads to higher average current density and higher sensitivity to cathode flooding.

Multi-Objective Planning and Operation of Water Supply Systems Subject to Climate Change

Many water supply systems in Australia are currently undergoing significant reconfiguration due to reductions in long term average rainfall and resulting low inflows to water supply reservoirs since the second half of the 20th century. When water supply systems undergo change, it is necessary to develop new operating rules, which should consider climate, because the climate change is likely to further reduce inflows. In addition, water resource systems are increasingly intended to be operated to meet complex and multiple objectives representing social, economic, environmental and sustainability criteria. This is further complicated by conflicting preferences on these objectives from diverse stakeholders. This paper describes a methodology to develop optimum operating rules for complex multi-reservoir systems undergoing significant change, considering all of the above issues. The methodology is demonstrated using the Grampians water supply system in northwest Victoria, Australia. Initial work conducted on the project is also presented in this paper.

Influence of Flood Detention Capability in Flood Prevention for Flood Disaster of Depression Area

Rainfall records of rainfall station including the rainfall potential per hour and rainfall mass of five heavy storms are explored, respectively from 2001 to 2010. The rationalization formula is to investigate the capability of flood peak duration of flood detention pond in different rainfall conditions. The stable flood detention model is also proposed by using system dynamic control theory to get the message of flood detention pond in this research. When rainfall frequency of one hour rainfall duration is more than 100-year frequency which exceeds the flood detention standard of 20-year frequency for the flood detention pond, the flood peak duration of flood detention pond is 1.7 hours at most even though the flood detention pond with maximum drainage potential about 15.0 m3/s of pumping system is constructed. If the rainfall peak current is more than maximum drainage potential, the flood peak duration of flood detention pond is about 1.9 hours at most. The flood detention pond is the key factor of stable drainage control and flood prevention. The critical factors of flood disaster is not only rainfall mass, but also rainfall frequency of heavy storm in different rainfall duration and flood detention frequency of flood detention system.

Bridging the Gap Between CBR and VBR for H264 Standard

This paper provides a flexible way of controlling Variable-Bit-Rate (VBR) of compressed digital video, applicable to the new H264 video compression standard. The entire video sequence is assessed in advance and the quantisation level is then set such that bit rate (and thus the frame rate) remains within predetermined limits compatible with the bandwidth of the transmission system and the capabilities of the remote end, while at the same time providing constant quality similar to VBR encoding. A process for avoiding buffer starvation by selectively eliminating frames from the encoded output at times when the frame rate is slow (large number of bits per frame) will be also described. Finally, the problem of buffer overflow will be solved by selectively eliminating frames from the received input to the decoder. The decoder detects the omission of the frames and resynchronizes the transmission by monitoring time stamps and repeating frames if necessary.

RAPD Analysis of Genetic Diversity of Castor Bean

The aim of this work was to detect genetic variability among the set of 40 castor genotypes using 8 RAPD markers. Amplification of genomic DNA of 40 genotypes, using RAPD analysis, yielded in 66 fragments, with an average of 8.25 polymorphic fragments per primer. Number of amplified fragments ranged from 3 to 13, with the size of amplicons ranging from 100 to 1200 bp. Values of the polymorphic information content (PIC) value ranged from 0.556 to 0.895 with an average of 0.784 and diversity index (DI) value ranged from 0.621 to 0.896 with an average of 0.798. The dendrogram based on hierarchical cluster analysis using UPGMA algorithm was prepared and analyzed genotypes were grouped into two main clusters and only two genotypes could not be distinguished. Knowledge on the genetic diversity of castor can be used for future breeding programs for increased oil production for industrial uses.

Comparison of MFCC and Cepstral Coefficients as a Feature Set for PCG Biometric Systems

Heart sound is an acoustic signal and many techniques used nowadays for human recognition tasks borrow speech recognition techniques. One popular choice for feature extraction of accoustic signals is the Mel Frequency Cepstral Coefficients (MFCC) which maps the signal onto a non-linear Mel-Scale that mimics the human hearing. However the Mel-Scale is almost linear in the frequency region of heart sounds and thus should produce similar results with the standard cepstral coefficients (CC). In this paper, MFCC is investigated to see if it produces superior results for PCG based human identification system compared to CC. Results show that the MFCC system is still superior to CC despite linear filter-banks in the lower frequency range, giving up to 95% correct recognition rate for MFCC and 90% for CC. Further experiments show that the high recognition rate is due to the implementation of filter-banks and not from Mel-Scaling.

All-Pairs Shortest-Paths Problem for Unweighted Graphs in O(n2 log n) Time

Given a simple connected unweighted undirected graph G = (V (G), E(G)) with |V (G)| = n and |E(G)| = m, we present a new algorithm for the all-pairs shortest-path (APSP) problem. The running time of our algorithm is in O(n2 log n). This bound is an improvement over previous best known O(n2.376) time bound of Raimund Seidel (1995) for general graphs. The algorithm presented does not rely on fast matrix multiplication. Our algorithm with slight modifications, enables us to compute the APSP problem for unweighted directed graph in time O(n2 log n), improving a previous best known O(n2.575) time bound of Uri Zwick (2002).

Performance Assessment of Wet-Compression Gas Turbine Cycle with Turbine Blade Cooling

Turbine blade cooling is considered as the most effective way of maintaining high operating temperature making use of the available materials, and turbine systems with wet compression have a potential for future power generation because of high efficiency and high specific power with a relatively low cost. In this paper performance analysis of wet-compression gas turbine cycle with turbine blade cooling is carried out. The wet compression process is analytically modeled based on non-equilibrium droplet evaporation. Special attention is paid for the effects of pressure ratio and water injection ratio on the important system variables such as ratio of coolant fluid flow, fuel consumption, thermal efficiency and specific power. Parametric studies show that wet compression leads to insignificant improvement in thermal efficiency but significant enhancement of specific power in gas turbine systems with turbine blade cooling.

Communication Engineering Curriculum (Past, Present and the Future)

At present time, competition, unpredictable fluctuations have made communication engineering education in the global sphere really difficult. Confront with new situation in the engineering education sector. Communication engineering education has to be reformed and ready to use more advanced technologies. We realized that one of the general problems of student`s education is that after graduating from their universities, they are not prepared to face the real life challenges and full skilled to work in industry. They are prepared only to think like engineers and professionals but they also need to possess some others non-technical skills. In today-s environment, technical competence alone is not sufficient for career success. Employers want employees (graduate engineers) who have good oral and written communication (soft) skills. It does require for team work, business awareness, organization, management skills, responsibility, initiative, problem solving and IT competency. This proposed curriculum brings interactive, creative, interesting, effective learning methods, which includes online education, virtual labs, practical work, problem-based learning (PBL), and lectures given by industry experts. Giving short assignments, presentations, reports, research papers and projects students can significantly improve their non-technical skills. Also, we noticed the importance of using ICT technologies in engineering education which used by students and teachers, and included that into proposed teaching and learning methods. We added collaborative learning between students through team work which builds theirs skills besides course materials. The prospective on this research that we intent to update communication engineering curriculum in order to get fully constructed engineer students to ready for real industry work.