Seismic Response Reduction of Structures using Smart Base Isolation System

In this study, control performance of a smart base isolation system consisting of a friction pendulum system (FPS) and a magnetorheological (MR) damper has been investigated. A fuzzy logic controller (FLC) is used to modulate the MR damper so as to minimize structural acceleration while maintaining acceptable base displacement levels. To this end, a multi-objective optimization scheme is used to optimize parameters of membership functions and find appropriate fuzzy rules. To demonstrate effectiveness of the proposed multi-objective genetic algorithm for FLC, a numerical study of a smart base isolation system is conducted using several historical earthquakes. It is shown that the proposed method can find optimal fuzzy rules and that the optimized FLC outperforms not only a passive control strategy but also a human-designed FLC and a conventional semi-active control algorithm.

Dual-Link Hierarchical Cluster-Based Interconnect Architecture for 3D Network on Chip

Network on Chip (NoC) has emerged as a promising on chip communication infrastructure. Three Dimensional Integrate Circuit (3D IC) provides small interconnection length between layers and the interconnect scalability in the third dimension, which can further improve the performance of NoC. Therefore, in this paper, a hierarchical cluster-based interconnect architecture is merged with the 3D IC. This interconnect architecture significantly reduces the number of long wires. Since this architecture only has approximately a quarter of routers in 3D mesh-based architecture, the average number of hops is smaller, which leads to lower latency and higher throughput. Moreover, smaller number of routers decreases the area overhead. Meanwhile, some dual links are inserted into the bottlenecks of communication to improve the performance of NoC. Simulation results demonstrate our theoretical analysis and show the advantages of our proposed architecture in latency, throughput and area, when compared with 3D mesh-based architecture.

Coordination on Agrifood Supply Chain

Coordinated supply chain represents major challenges for the different actors involved in it, because each agent responds to individual interests. The paper presents a framework with the reviewed literature regarding the system's decision structure and nature of demand. Later, it characterizes an agri food supply chain in the Central Region of Colombia, it responds to a decentralized distribution system and a stochastic demand. Finally, the paper recommends coordinating the chain based on shared information, and mechanisms for each agent, as VMI (vendor-managed inventory) strategy for farmer-buyer relationship, information system for farmers and contracts for transportation service providers.

An Examination of Backing Effects on Ratings for Masonry Arch Bridges

Many single or multispan arch bridges are strengthened with the addition of some kind of structural support between adjacent arches of multispan or beside the arch barrel of a single span to increase the strength of the overall structure. It was traditionally formed by either placing loose rubble masonry blocks between the arches and beside the arches or using mortar or concrete to construct a more substantial structural bond between the spans. On the other hand backing materials are present in some existing bridges. Existing arch assessment procedures generally ignore the effects of backing materials. In this paper an investigation of the effects of backing on ratings for masonry arch bridges is carried out. It is observed that increasing the overall lateral stability of the arch system through the inclusion of structural backing results in an enhanced failure load by reducing the likelihood of any tension occurring at the top of the arch.

Impact of Computer-Mediated Communication on Virtual Teams- Performance: An Empirical Study

In a complex project environment, project teams face multi-dimensional communication problems that can ultimately lead to project breakdown. Team Performance varies in Face-to-Face (FTF) environment versus groups working remotely in a computermediated communication (CMC) environment. A brief review of the Input_Process_Output model suggested by James E. Driskell, Paul H. Radtke and Eduardo Salas in “Virtual Teams: Effects of Technological Mediation on Team Performance (2003)", has been done to develop the basis of this research. This model theoretically analyzes the effects of technological mediation on team processes, such as, cohesiveness, status and authority relations, counternormative behavior and communication. An empirical study described in this paper has been undertaken to test the “cohesiveness" of diverse project teams in a multi-national organization. This study uses both quantitative and qualitative techniques for data gathering and analysis. These techniques include interviews, questionnaires for data collection and graphical data representation for analyzing the collected data. Computer-mediated technology may impact team performance because of difference in cohesiveness among teams and this difference may be moderated by factors, such as, the type of communication environment, the type of task and the temporal context of the team. Based on the reviewed model, sets of hypotheses are devised and tested. This research, reports on a study that compared team cohesiveness among virtual teams using CMC and non-CMC communication mediums. The findings suggest that CMC can help virtual teams increase team cohesiveness among their members, making CMC an effective medium for increasing productivity and team performance.

Effect of Heat Treatment on the Phase Formation of La0.6Sr0.4CoO3-α

Powder of La0.6Sr0.4CoO3-α (LSCO) was synthesized by a combined citrate-EDTA method. The as-synthesized LSCO powder was calcined, respectively at temperatures of 800, 900 and 1000 °C with different heating/cooling rates which are 2, 5, 10 and 15 °C min-1. The effects of heat treatments on the phase formation of perovskite phase of LSCO were investigated by powder X-ray diffraction (XRD). The XRD patterns revealed that the rate of 5 °C min-1 is the optimum heating/cooling rate to obtain a single perovskite phase of LSCO with calcination temperature of 800 °C. This result was confirmed by a thermogravimetric analysis (TGA) as it showed a complete decomposition of intermediate compounds to form oxide material was also observed at 800 °C.

Kinematic Modelling and Maneuvering of A 5-Axes Articulated Robot Arm

This paper features the kinematic modelling of a 5-axis stationary articulated robot arm which is used for doing successful robotic manipulation task in its workspace. To start with, a 5-axes articulated robot was designed entirely from scratch and from indigenous components and a brief kinematic modelling was performed and using this kinematic model, the pick and place task was performed successfully in the work space of the robot. A user friendly GUI was developed in C++ language which was used to perform the successful robotic manipulation task using the developed mathematical kinematic model. This developed kinematic model also incorporates the obstacle avoiding algorithms also during the pick and place operation.

Construction and Performance Characterization of the Looped-Tube Travelling-Wave Thermoacoustic Engine with Ceramic Regenerator

In a travelling wave thermoacoustic device, the regenerator sandwiched between a pair of (hot and cold) heat exchangers constitutes the so-called thermoacoustic core, where the thermoacoustic energy conversion from heat to acoustic power takes place. The temperature gradient along the regenerator caused by the two heat exchangers excites and maintains the acoustic wave in the resonator. The devices are called travelling wave thermoacoustic systems because the phase angle difference between the pressure and velocity oscillation is close to zero in the regenerator. This paper presents the construction and testing of a thermoacoustic engine equipped with a ceramic regenerator, made from a ceramic material that is usually used as catalyst substrate in vehicles- exhaust systems, with fine square channels (900 cells per square inch). The testing includes the onset temperature difference (minimum temperature difference required to start the acoustic oscillation in an engine), the acoustic power output, thermal efficiency and the temperature profile along the regenerator.

Towards a Sustained Use of Renewable Energy Sources in Romania

The paper presents the potential for RES in Romania and the results of the Romanian national research project “Romania contribution to the European targets regarding the development of renewable energy sources - PROMES". The objective of the project is the development of energy generation from renewable energy sources (RES) in Romania by drawing up scenarios and prognosis harmonized with national and European targets, RES development effects modeling (environmental, economic, social etc.), research of the impact of the penetration of RES into the main, implementation of an advanced software system tool for RES information recording and communication, experimental research based on demonstrative applications. The expected results are briefly presented, as well as the social, economic and environmental impact.

Resource Matching and a Matchmaking Service for an Intelligent Grid

We discuss the application of matching in the area of resource discovery and resource allocation in grid computing. We present a formal definition of matchmaking, overview algorithms to evaluate different matchmaking expressions, and develop a matchmaking service for an intelligent grid environment.

Numerical Study of Fluid Mixing in a Grooved Micro-Channel with Wavy Sidewalls

In this work, we perform numerical simulation of fluid mixing in a floor-grooved micro-channel with wavy sidewalls which may impose perturbation on the helical flow induced by the slanted grooves on the channel floor. The perturbation is caused by separation vortices in the recesses of the wavy-walled channel as the Reynolds number is large enough. The results show that the effects of the wavy sidewalls of the present micromixer on the enhancement of fluid mixing increase with the increase of Reynolds number. The degree of mixing increases with the increase of the corrugation angle, until the angle is greater than 45 degrees. Besides, the pumping pressure of the micromixer increases with the increase of the corrugation angle monotonically. Therefore, we would suggest setting the corrugation angle of the wavy sidewalls to be 45 degrees.

Vibration Control of a Cantilever Beam Using a Tunable Vibration Absorber Embedded with ER Fluids

This paper investigates experimental studies on vibration suppression for a cantilever beam using an Electro-Rheological (ER) sandwich shock absorber. ER fluid (ERF) is a class of smart materials that can undergo significant reversible changes immediately in its rheological and mechanical properties under the influence of an applied electric field. Firstly, an ER sandwich beam is fabricated by inserting a starch-based ERF into a hollow composite beam. At the same time, experimental investigations are focused on the frequency response of the ERF sandwich beam. Second, the ERF sandwich beam is attached to a cantilever beam to become as a shock absorber. Finally, a fuzzy semi-active vibration control is designed to suppress the vibration of the cantilever beam via the ERF sandwich shock absorber. To check the consistency of the proposed fuzzy controller, the real-time implementation validated the performance of the controller.

Mixed-Mode Study of Rock Fracture Mechanics by using the Modified Arcan Specimen Test

This paper studies mixed-mode fracture mechanics in rock based on experimental and numerical analyses. Experiments were performed on sharp-cracked specimens using the modified Arcan specimen test loading device. The modified Arcan specimen test was, in association with a special loading device, an appropriate apparatus for experimental mixed-mode fracture analysis. By varying the loading angle from 0° to 90°, pure mode-I, pure mode-II and a wide range of mixed-mode data were obtained experimentally. Using the finite element results, correction factors applied to the rectangular fracture specimen. By employing experimentally measured critical loads and the aid of the finite element method, mixed-mode fracture toughness for the limestone under consideration determined.

An Environmental Impact Tool to Assess National Energy Scenarios

The Long-range Energy and Alternatives Planning (LEAP) energy planning system has been developed for South Africa, for the 2005 base year and a limited number of plausible future scenarios that may have significant implications (negative or positive) in terms of environmental impacts. The system quantifies the national energy demand for the domestic, commercial, transport, industry and agriculture sectors, the supply of electricity and liquid fuels, and the resulting emissions. The South African National Energy Research Institute (SANERI) identified the need to develop an environmental assessment tool, based on the LEAP energy planning system, to provide decision-makers and stakeholders with the necessary understanding of the environmental impacts associated with different energy scenarios. A comprehensive analysis of indicators that are used internationally and in South Africa was done and the available data was accessed to select a reasonable number of indicators that could be utilized in energy planning. A consultative process was followed to determine the needs of different stakeholders on the required indicators and also the most suitable form of reporting. This paper demonstrates the application of Energy Environmental Sustainability Indicators (EESIs) as part of the developed tool, which assists with the identification of the environmental consequences of energy generation and use scenarios and thereby promotes sustainability, since environmental considerations can then be integrated into the preparation and adoption of policies, plans, programs and projects. Recommendations are made to refine the tool further for South Africa.

Low-complexity Integer Frequency Offset Synchronization for OFDMA System

This paper presents a integer frequency offset (IFO) estimation scheme for the 3GPP long term evolution (LTE) downlink system. Firstly, the conventional joint detection method for IFO and sector cell index (CID) information is introduced. Secondly, an IFO estimation without explicit sector CID information is proposed, which can operate jointly with the proposed IFO estimation and reduce the time delay in comparison with the conventional joint method. Also, the proposed method is computationally efficient and has almost similar performance in comparison with the conventional method over the Pedestrian and Vehicular channel models.

Verification Process of Cylindrical Contact Force Models for Internal Contact Modeling

In the numerical solution of the forward dynamics of a multibody system, the positions and velocities of the bodies in the system are obtained first. With the information of the system state variables at each time step, the internal and external forces acting on the system are obtained by appropriate contact force models if the continuous contact method is used instead of a discrete contact method. The local deformation of the bodies in contact, represented by penetration, is used to compute the contact force. The ability and suitability with current cylindrical contact force models to describe the contact between bodies with cylindrical geometries with particular focus on internal contacting geometries involving low clearances and high loads simultaneously is discussed in this paper. A comparative assessment of the performance of each model under analysis for different contact conditions, in particular for very different penetration and clearance values, is presented. It is demonstrated that some models represent a rough approximation to describe the conformal contact between cylindrical geometries because contact forces are underestimated.

Biological Data Integration using SOA

Nowadays scientific data is inevitably digital and stored in a wide variety of formats in heterogeneous systems. Scientists need to access an integrated view of remote or local heterogeneous data sources with advanced data accessing, analyzing, and visualization tools. This research suggests the use of Service Oriented Architecture (SOA) to integrate biological data from different data sources. This work shows SOA will solve the problems that facing integration process and if the biologist scientists can access the biological data in easier way. There are several methods to implement SOA but web service is the most popular method. The Microsoft .Net Framework used to implement proposed architecture.

Region Based Hidden Markov Random Field Model for Brain MR Image Segmentation

In this paper, we present the region based hidden Markov random field model (RBHMRF), which encodes the characteristics of different brain regions into a probabilistic framework for brain MR image segmentation. The recently proposed TV+L1 model is used for region extraction. By utilizing different spatial characteristics in different brain regions, the RMHMRF model performs beyond the current state-of-the-art method, the hidden Markov random field model (HMRF), which uses identical spatial information throughout the whole brain. Experiments on both real and synthetic 3D MR images show that the segmentation result of the proposed method has higher accuracy compared to existing algorithms.

Segmental and Subsegmental Lung Vessel Segmentation in CTA Images

In this paper, a novel and fast algorithm for segmental and subsegmental lung vessel segmentation is introduced using Computed Tomography Angiography images. This process is quite important especially at the detection of pulmonary embolism, lung nodule, and interstitial lung disease. The applied method has been realized at five steps. At the first step, lung segmentation is achieved. At the second one, images are threshold and differences between the images are detected. At the third one, left and right lungs are gathered with the differences which are attained in the second step and Exact Lung Image (ELI) is achieved. At the fourth one, image, which is threshold for vessel, is gathered with the ELI. Lastly, identifying and segmentation of segmental and subsegmental lung vessel have been carried out thanks to image which is obtained in the fourth step. The performance of the applied method is found quite well for radiologists and it gives enough results to the surgeries medically.

Offline Signature Recognition using Radon Transform

In this work a new offline signature recognition system based on Radon Transform, Fractal Dimension (FD) and Support Vector Machine (SVM) is presented. In the first step, projections of original signatures along four specified directions have been performed using radon transform. Then, FDs of four obtained vectors are calculated to construct a feature vector for each signature. These vectors are then fed into SVM classifier for recognition of signatures. In order to evaluate the effectiveness of the system several experiments are carried out. Offline signature database from signature verification competition (SVC) 2004 is used during all of the tests. Experimental result indicates that the proposed method achieved high accuracy rate in signature recognition.