Knowledge Discovery from Production Databases for Hierarchical Process Control

The paper gives the results of the project that was oriented on the usage of knowledge discoveries from production systems for needs of the hierarchical process control. One of the main project goals was the proposal of knowledge discovery model for process control. Specifics data mining methods and techniques was used for defined problems of the process control. The gained knowledge was used on the real production system thus the proposed solution has been verified. The paper documents how is possible to apply the new discovery knowledge to use in the real hierarchical process control. There are specified the opportunities for application of the proposed knowledge discovery model for hierarchical process control.

Flow Properties of Wood Pulp Suspensions in Pipes

The flow of suspensions of wood pulp fibers in circular pipes has been investigated experimentally. The flow characteristics of pulp suspensions are discussed with regard to five flow regimes designated by the author. In particular, the effects of the shear stress at the pipe wall on the disruption and dispersion of networks of pulp fibers are examined. The values of the disruptive and dispersive shear stresses are formulated as simple expressions depending on only the fiber concentration. Furthermore, the flow properties of the suspensions are described using the yield shear stress.

Mobile Ad Hoc Networks and It’s Routing Protocols

A mobile ad hoc network (MANET) is a self configuring network, without any centralized control. The topology of this network is not always defined. The main objective of this paper is to introduce the fundamental concepts of MANETs to the researchers and practitioners, who are involved in the work in the area of modeling and simulation of MANETs. This paper begins with an overview of mobile ad hoc networks. Then it proceeds with the overview of routing protocols used in the MANETS, their properties and simulation methods. A brief tabular comparison between the routing protocols is also given in this paper considering different routing protocol parameters. This paper introduces a new routing scheme developed by the use of evolutionary algorithms (EA) and analytical hierarchy process (AHP) which will be used for getting the optimized output of MANET. In this paper cryptographic technique, ceaser cipher is also employed for making the optimized route secure.

Motion Control of an Autonomous Surface Vessel for Enhanced Situational Awareness

This paper focuses on the critical components of the situational awareness (SA), the controls of position and orientation of an autonomous surface vessel (ASV). Moving of vessel into desired area in particular sea is a challenging but important task for ASVs to achieve high level of autonomy under adverse conditions. With the SA strategy, the approach motion by neural control of an initial stage of an ASV trajectory using neural network predictive controller and the circular motion by control of yaw moment in the final stage of trajectory were proposed. This control system has been demonstrated and evaluated by simulation of maritime maneuvers using software package Simulink. From the simulation results it can be seen that the fast SA of similar ASVs with economy in energy can be asserted during the maritime missions in search-and-rescue operations.

Intelligent Temperature Controller for Water-Bath System

Conventional controller’s usually required a prior knowledge of mathematical modelling of the process. The inaccuracy of mathematical modelling degrades the performance of the process, especially for non-linear and complex control problem. The process used is Water-Bath system, which is most widely used and nonlinear to some extent. For Water-Bath system, it is necessary to attain desired temperature within a specified period of time to avoid the overshoot and absolute error, with better temperature tracking capability, else the process is disturbed. To overcome above difficulties intelligent controllers, Fuzzy Logic (FL) and Adaptive Neuro-Fuzzy Inference System (ANFIS), are proposed in this paper. The Fuzzy controller is designed to work with knowledge in the form of linguistic control rules. But the translation of these linguistic rules into the framework of fuzzy set theory depends on the choice of certain parameters, for which no formal method is known. To design ANFIS, Fuzzy-Inference-System is combined with learning capability of Neural-Network. It is analyzed that ANFIS is best suitable for adaptive temperature control of above system. As compared to PID and FLC, ANFIS produces a stable control signal. It has much better temperature tracking capability with almost zero overshoot and minimum absolute error.

An Efficient Burst Errors Combating for Image Transmission over Mobile WPANs

This paper presents an efficient burst error spreading tool. Also, it studies a vital issue in wireless communications, which is the transmission of images over wireless networks. IEEE ZigBee 802.15.4 is a short-range communication standard that could be used for small distance multimedia transmissions. In fact, the ZigBee network is a Wireless Personal Area Network (WPAN), which needs a strong interleaving mechanism for protection against error bursts. Also, it is low power technology and utilized in the Wireless Sensor Networks (WSN) implementation. This paper presents the chaotic interleaving scheme as a data randomization tool for this purpose. This scheme depends on the chaotic Baker map. The mobility effects on the image transmission are studied with different velocity through utilizing the Jakes’ model. A comparison study between the proposed chaotic interleaving scheme and the traditional block and convolutional interleaving schemes for image transmission over a correlated fading channel is presented. The simulation results show the superiority of the proposed chaotic interleaving scheme over the traditional schemes.

Performance Analysis of Round Trip Delay Time in Practical Wireless Network for Telemanagement

In this paper we focus on the Round Trip Delay (RTD) time measurement technique which is an easy way to obtain the operating condition information in wireless network (WN). RTD measurement is affected by various parameters of wireless network. We illustrate how these RTD parameters vary (in a telemanagement application) versus distance, baud rates, number of hops, between nodes, using radio modem & router unit as a means of transmission and wireless routing.

Engagement of Young People in Social Networks: Awareness and Security

Numerous threats have been identified when using social networks. The question is whether young people are aware of these negative impacts of online and mobile technologies. Will they identify threats when needed? Will they know where to get help? Students and school children were part of a survey where their behavior and use of Facebook and an instant messaging application - MXit were studied. This paper presents some of the results. It can be concluded that awareness on security and privacy issues should be raised. The benefit of doing such a survey is that it may help to direct educational efforts from a young age. In this way children – with their parents – can strive towards more secure behavior. Educators can focus their lessons towards the areas that need attention resulting in safer cyber interaction and ultimately more responsible online use.

Throughput Optimization on Wireless Networks by Increasing the Maximum Transmission Unit

Throughput enhancement can be achieved with two main approaches. The first one is by the increase of transmission rate and the second one is reducing the control traffic. This paper focuses on how the throughput can be enhanced by increasing Maximum Transmission Unit -MTU. Transmission of larger packets can cause a throughput improvement by reducing IP overhead. Analysis results are obtained by a mathematical model and simulation tools with a main focus on wireless channels.

Effects of Signaling on the Performance of Directed Diffusion Routing Protocol

In an original directed diffusion routing protocol, a sink requests sensing data from a source node by flooding interest messages to the network. Then, the source finds the sink by sending exploratory data messages to all nodes that generate incoming interest messages. This protocol signaling can cause heavy traffic in the network, an interference of the radio signal, collisions, great energy consumption of sensor nodes, etc. According to this research problem, this paper investigates the effect of sending interest and exploratory data messages on the performance of directed diffusion routing protocol. We demonstrate the research problem occurred from employing directed diffusion protocol in mobile wireless environments. For this purpose, we perform a set of experiments by using NS2 (network simulator 2). The radio propagation models; Two-ray ground reflection with and without shadow fading are included to investigate the effect of signaling. The simulation results show that the number of times of sent and received protocol signaling in the case of sending interest and exploratory data messages are larger than the case of sending other protocol signals, especially in the case of shadowing model. Additionally, the number of exploratory data message is largest in one round of the protocol procedure.

Performance Evaluation of Faculties of Islamic Azad University of Zahedan Branch Based-On Two-Component DEA

The aim of this paper is to evaluate the performance of the faculties of Islamic Azad University of Zahedan Branch based on two-component (teaching and research) decision making units (DMUs) in data envelopment analysis (DEA). Nowadays it is obvious that most of the systems as DMUs do not act as a simple inputoutput structure. Instead, if they have been studied more delicately, they include network structure. University is such a network in which different sections i.e. teaching, research, students and office work as a parallel structure. They consume some inputs of university commonly and some others individually. Then, they produce both dependent and independent outputs. These DMUs are called two-component DMUs with network structure. In this paper, performance of the faculties of Zahedan branch is calculated by using relative efficiency model and also, a formula to compute relative efficiencies teaching and research components based on DEA are offered.

Recommender Systems Using Ensemble Techniques

This study proposes a novel recommender system that uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user’s preference. The proposed model consists of two steps. In the first step, this study uses logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. Then, this study combines the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. In the second step, this study uses the market basket analysis to extract association rules for co-purchased products. Finally, the system selects customers who have high likelihood to purchase products in each product group and recommends proper products from same or different product groups to them through above two steps. We test the usability of the proposed system by using prototype and real-world transaction and profile data. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The results also show that the proposed system may be useful in real-world online shopping store.

A Preliminary Study on Effects of Community Structures on Epidemic Spreading and Detection in Complex Networks

Community structures widely exist in almost all real-life networks. Extensive researches have been carried out on detecting community structures in complex networks. However, many aspects of how community structures may affect the dynamics and properties of complex networks still remain unclear. In this work, we examine the impacts of community structures on the epidemic spreading and detection in complex networks. Extensive simulation results show that community structures may not help decrease the infection size at steady state, yet they could indeed help slow down the infection spreading. Also, networks with strong community structures may expect to have a smaller average infection size when equipped with a number of sparsely deployed monitors.

Cryptanalysis of Yang-Li-Liao’s Simple Three-Party Key Exchange (S-3PAKE) Protocol

Three-party password authenticated key exchange (3PAKE) protocols are widely deployed on lots of remote user authentication system due to its simplicity and convenience of maintaining a human-memorable password at client side to achieve secure communication within a hostile network. Recently, an improvement of 3PAKE protocol by processing a built-in data attached to other party for identity authentication to individual data was proposed by some researchers. However, this paper points out that the improved 3PAKE protocol is still vulnerable to undetectable on-line dictionary attack and off-line dictionary attack.

Disturbances of the Normal Operation of Kosovo Power System Regarding Atmospheric Discharges

This paper discusses aspects of outages in the electric transmission network in the Kosovo Power System caused by the atmospheric discharges. Frequency and location of the atmospheric discharges in Kosovo territory will be provided by a lightning location system ALARM (Automated Lightning Alert and Risk Management) and from the data from the Meteorological Department in Prishtina International Airport. These data will be used to make comparisons with the actual outages registered in the Kosovo Power System from the Kosovo Transmission, systems and market operator (KOSTT) during a specific time period. The lines with the worst performance determined, regarding the atmospheric discharges, will be choose for further discussions in terms of over voltages caused by the direct or indirect lightning strokes. Recommendations for protection in terms of insulator coordination and surge arresters will be given at the end and in this stage dynamic simulation will take part.

Early-Warning Lights Classification Management System for Industrial Parks in Taiwan

This paper presents the early-warning lights classification management system for industrial parks promoted by the Taiwan Environmental Protection Administration (EPA) since 2011, including the definition of each early-warning light, objectives, action program and accomplishments. All of the 151 industrial parks in Taiwan were classified into four early-warning lights, including red, orange, yellow and green, for carrying out respective pollution management according to the monitoring data of soil and groundwater quality, regulatory compliance, and regulatory listing of control site or remediation site. The Taiwan EPA set up a priority list for high potential polluted industrial parks and investigated their soil and groundwater qualities based on the results of the light classification and pollution potential assessment. In 2011-2013, there were 44 industrial parks selected and carried out different investigation, such as the early warning groundwater well networks establishment and pollution investigation/verification for the red and orange-light industrial parks and the environmental background survey for the yellow-light industrial parks. Among them, 22 industrial parks were newly or continuously confirmed that the concentrations of pollutants exceeded those in soil or groundwater pollution control standards. Thus, the further investigation, groundwater use restriction, listing of pollution control site or remediation site, and pollutant isolation measures were implemented by the local environmental protection and industry competent authorities; the early warning lights of those industrial parks were proposed to adjust up to orange or red-light. Up to the present, the preliminary positive effect of the soil and groundwater quality management system for industrial parks has been noticed in several aspects, such as environmental background information collection, early warning of pollution risk, pollution investigation and control, information integration and application, and inter-agency collaboration. Finally, the work and goal of self-initiated quality management of industrial parks will be carried out on the basis of the inter-agency collaboration by the classified lights system of early warning and management as well as the regular announcement of the status of each industrial park.

Impact of Liquidity Crunch on Interbank Network

Most empirical studies have analyzed how liquidity risks faced by individual institutions turn into systemic risk. Recent banking crisis has highlighted the importance of grasping and controlling the systemic risk, and the acceptance by Central Banks to ease their monetary policies for saving default or illiquid banks. This last point shows that banks would pay less attention to liquidity risk which, in turn, can become a new important channel of loss. The financial regulation focuses on the most important and “systemic” banks in the global network. However, to quantify the expected loss associated with liquidity risk, it is worth to analyze sensitivity to this channel for the various elements of the global bank network. A small bank is not considered as potentially systemic; however the interaction of small banks all together can become a systemic element. This paper analyzes the impact of medium and small banks interaction on a set of banks which is considered as the core of the network. The proposed method uses the structure of agent-based model in a two-class environment. In first class, the data from actual balance sheets of 22 large and systemic banks (such as BNP Paribas or Barclays) are collected. In second one, to model a network as closely as possible to actual interbank market, 578 fictitious banks smaller than the ones belonging to first class have been split into two groups of small and medium ones. All banks are active on the European interbank network and have deposit and market activity. A simulation of 12 three month periods representing a midterm time interval three years is projected. In each period, there is a set of behavioral descriptions: repayment of matured loans, liquidation of deposits, income from securities, collection of new deposits, new demands of credit, and securities sale. The last two actions are part of refunding process developed in this paper. To strengthen reliability of proposed model, random parameters dynamics are managed with stochastic equations as rates the variations of which are generated by Vasicek model. The Central Bank is considered as the lender of last resort which allows banks to borrow at REPO rate and some ejection conditions of banks from the system are introduced. Liquidity crunch due to exogenous crisis is simulated in the first class and the loss impact on other bank classes is analyzed though aggregate values representing the aggregate of loans and/or the aggregate of borrowing between classes. It is mainly shown that the three groups of European interbank network do not have the same response, and that intermediate banks are the most sensitive to liquidity risk.

Off-Line Signature Recognition Based On Angle Features and GRNN Neural Networks

This research presents a handwritten signature recognition based on angle feature vector using Artificial Neural Network (ANN). Each signature image will be represented by an Angle vector. The feature vector will constitute the input to the ANN. The collection of signature images will be divided into two sets. One set will be used for training the ANN in a supervised fashion. The other set which is never seen by the ANN will be used for testing. After training, the ANN will be tested for recognition of the signature. When the signature is classified correctly, it is considered correct recognition otherwise it is a failure.

Isolation and Classification of Red Blood Cells in Anemic Microscopic Images

Red blood cells (RBCs) are among the most commonly and intensively studied type of blood cells in cell biology. Anemia is a lack of RBCs is characterized by its level compared to the normal hemoglobin level. In this study, a system based image processing methodology was developed to localize and extract RBCs from microscopic images. Also, the machine learning approach is adopted to classify the localized anemic RBCs images. Several textural and geometrical features are calculated for each extracted RBCs. The training set of features was analyzed using principal component analysis (PCA). With the proposed method, RBCs were isolated in 4.3secondsfrom an image containing 18 to 27 cells. The reasons behind using PCA are its low computation complexity and suitability to find the most discriminating features which can lead to accurate classification decisions. Our classifier algorithm yielded accuracy rates of 100%, 99.99%, and 96.50% for K-nearest neighbor (K-NN) algorithm, support vector machine (SVM), and neural network RBFNN, respectively. Classification was evaluated in highly sensitivity, specificity, and kappa statistical parameters. In conclusion, the classification results were obtained within short time period, and the results became better when PCA was used.

A Statistical Prediction of Likely Distress in Nigeria Banking Sector Using a Neural Network Approach

One of the most significant threats to the economy of a nation is the bankruptcy of its banks. This study evaluates the susceptibility of Nigerian banks to failure with a view to identifying ratios and financial data that are sensitive to solvency of the bank. Further, a predictive model is generated to guide all stakeholders in the industry. Thirty quoted banks that had published Annual Reports for the year preceding the consolidation i.e. year 2004 were selected. They were examined for distress using the Multilayer Perceptron Neural Network Analysis. The model was used to analyze further reforms by the Central Bank of Nigeria using published Annual Reports of twenty quoted banks for the year 2008 and 2011. The model can thus be used for future prediction of failure in the Nigerian banking system.