Complementing Assessment Processes with Standardized Tests: A Work in Progress

ABET accredited programs must assess the development of student learning outcomes (SOs) in engineering programs. Different institutions implement different strategies for this assessment, and they are usually designed “in house.” This paper presents a proposal for including standardized tests to complement the ABET assessment model in an engineering college made up of six distinct engineering programs. The engineering college formulated a model of quality assurance in education to be implemented throughout the six engineering programs to regularly assess and evaluate the achievement of SOs in each program offered. The model uses diverse techniques and sources of data to assess student performance and to implement actions of improvement based on the results of this assessment. The model is called “Assessment Process Model” and it includes SOs A through K, as defined by ABET. SOs can be divided into two categories: “hard skills” and “professional skills” (soft skills). The first includes abilities, such as: applying knowledge of mathematics, science, and engineering and designing and conducting experiments, as well as analyzing and interpreting data. The second category, “professional skills”, includes communicating effectively, and understanding professional and ethnical responsibility. Within the Assessment Process Model, various tools were used to assess SOs, related to both “hard” as well as “soft” skills. The assessment tools designed included: rubrics, surveys, questionnaires, and portfolios. In addition to these instruments, the Engineering College decided to use tools that systematically gather consistent quantitative data. For this reason, an in-house exam was designed and implemented, based on the curriculum of each program. Even though this exam was administered during various academic periods, it is not currently considered standardized. In 2017, the Engineering College included three standardized tests: one to assess mathematical and scientific reasoning and two more to assess reading and writing abilities. With these exams, the college hopes to obtain complementary information that can help better measure the development of both hard and soft skills of students in the different engineering programs. In the first semester of 2017, the three exams were given to three sample groups of students from the six different engineering programs. Students in the sample groups were either from the first, fifth, and tenth semester cohorts. At the time of submission of this paper, the engineering college has descriptive statistical data and is working with various statisticians to have a more in-depth and detailed analysis of the sample group of students’ achievement on the three exams. The overall objective of including standardized exams in the assessment model is to identify more precisely the least developed SOs in order to define and implement educational strategies necessary for students to achieve them in each engineering program.

Appropriate Technology: Revisiting the Movement in Developing Countries for Sustainability

The economic growth of any nation is steered and dependent on innovation in technology. It can be preferably argued that technology has enhanced the quality of life. Technology is linked both with an economic and a social structure. But there are some parts of the world or communities which are yet to reap the benefits of technological innovation. Business and organizations are now well equipped with cutting-edge innovations that improve the firm performance and provide them with a competitive edge, but rarely does it have a positive impact on any community which is weak and marginalized. In recent times, it is observed that communities are actively handling social or ecological issues with the help of indigenous technologies. Thus, "Appropriate Technology" comes into the discussion, which is quite prevalent in the rural third world. Appropriate technology grew as a movement in the mid-1970s during the energy crisis, but it lost its stance in the following years when people started it to describe it as an inferior technology or dead technology. Basically, there is no such technology which is inferior or sophisticated for a particular region. The relevance of appropriate technology lies in penetrating technology into a larger and weaker section of community where the “Bottom of the pyramid” can pay for technology if they find the price is affordable. This is a theoretical paper which primarily revolves around how appropriate technology has faded and again evolved in both developed and developing countries. The paper will try to focus on the various concepts, history and challenges faced by the appropriate technology over the years. Appropriate technology follows a documented approach but lags in overall design and diffusion. Diffusion of technology into the poorer sections of community remains unanswered until the present time. Appropriate technology is multi-disciplinary in nature; therefore, this openness allows having a varied working model for different problems. Appropriate technology is a friendly technology that seeks to improve the lives of people in a constraint environment by providing an affordable and sustainable solution. Appropriate technology needs to be defined in the era of modern technological advancement for sustainability.

Long Short-Term Memory Based Model for Modeling Nicotine Consumption Using an Electronic Cigarette and Internet of Things Devices

In this paper, we want to determine whether the accurate prediction of nicotine concentration can be obtained by using a network of smart objects and an e-cigarette. The approach consists of, first, the recognition of factors influencing smoking cessation such as physical activity recognition and participant’s behaviors (using both smartphone and smartwatch), then the prediction of the configuration of the e-cigarette (in terms of nicotine concentration, power, and resistance of e-cigarette). The study uses a network of commonly connected objects; a smartwatch, a smartphone, and an e-cigarette transported by the participants during an uncontrolled experiment. The data obtained from sensors carried in the three devices were trained by a Long short-term memory algorithm (LSTM). Results show that our LSTM-based model allows predicting the configuration of the e-cigarette in terms of nicotine concentration, power, and resistance with a root mean square error percentage of 12.9%, 9.15%, and 11.84%, respectively. This study can help to better control consumption of nicotine and offer an intelligent configuration of the e-cigarette to users.

Numerical Modelling of Surface Waves Generated by Low Frequency Electromagnetic Field for Silicon Refinement Process

One of the most perspective methods to produce SoG-Si is refinement via metallurgical route. The most critical part of this route is refinement from boron and phosphorus. Therefore, a new approach could address this problem. We propose an approach of creating surface waves on silicon melt’s surface in order to enlarge its area and accelerate removal of boron via chemical reactions and evaporation of phosphorus. A two dimensional numerical model is created which includes coupling of electromagnetic and fluid dynamic simulations with free surface dynamics. First results show behaviour similar to experimental results from literature.

Robust and Transparent Spread Spectrum Audio Watermarking

In this paper, we propose a blind and robust audio watermarking scheme based on spread spectrum in Discrete Wavelet Transform (DWT) domain. Watermarks are embedded in the low-frequency coefficients, which is less audible. The key idea is dividing the audio signal into small frames, and magnitude of the 6th level of DWT approximation coefficients is modifying based upon the Direct Sequence Spread Spectrum (DSSS) technique. Also, the psychoacoustic model for enhancing in imperceptibility, as well as Savitsky-Golay filter for increasing accuracy in extraction, is used. The experimental results illustrate high robustness against most common attacks, i.e. Gaussian noise addition, Low pass filter, Resampling, Requantizing, MP3 compression, without significant perceptual distortion (ODG is higher than -1). The proposed scheme has about 83 bps data payload.

A Bi-Objective Stochastic Mathematical Model for Agricultural Supply Chain Network

Nowadays, in advanced countries, agriculture as one of the most significant sectors of the economy, plays an important role in its political and economic independence. Due to farmers' lack of information about products' demand and lack of proper planning for harvest time, annually the considerable amount of products is corrupted. Besides, in this paper, we attempt to improve these unfavorable conditions via designing an effective supply chain network that tries to minimize total costs of agricultural products along with minimizing shortage in demand points. To validate the proposed model, a stochastic optimization approach by using a branch and bound solver of the LINGO software is utilized. Furthermore, to accumulate the data of parameters, a case study in Mazandaran province placed in the north of Iran has been applied. Finally, using ɛ-constraint approach, a Pareto front is obtained and one of its Pareto solutions as best solution is selected. Then, related results of this solution are explained. Finally, conclusions and suggestions for the future research are presented.

Empirical Roughness Progression Models of Heavy Duty Rural Pavements

Empirical deterministic models have been developed to predict roughness progression of heavy duty spray sealed pavements for a dataset representing rural arterial roads. The dataset provides a good representation of the relevant network and covers a wide range of operating and environmental conditions. A sample with a large size of historical time series data for many pavement sections has been collected and prepared for use in multilevel regression analysis. The modelling parameters include road roughness as performance parameter and traffic loading, time, initial pavement strength, reactivity level of subgrade soil, climate condition, and condition of drainage system as predictor parameters. The purpose of this paper is to report the approaches adopted for models development and validation. The study presents multilevel models that can account for the correlation among time series data of the same section and to capture the effect of unobserved variables. Study results show that the models fit the data very well. The contribution and significance of relevant influencing factors in predicting roughness progression are presented and explained. The paper concludes that the analysis approach used for developing the models confirmed their accuracy and reliability by well-fitting to the validation data.

Flood Predicting in Karkheh River Basin Using Stochastic ARIMA Model

Floods have huge environmental and economic impact. Therefore, flood prediction is given a lot of attention due to its importance. This study analysed the annual maximum streamflow (discharge) (AMS or AMD) of Karkheh River in Karkheh River Basin for flood predicting using ARIMA model. For this purpose, we use the Box-Jenkins approach, which contains four-stage method model identification, parameter estimation, diagnostic checking and forecasting (predicting). The main tool used in ARIMA modelling was the SAS and SPSS software. Model identification was done by visual inspection on the ACF and PACF. SAS software computed the model parameters using the ML, CLS and ULS methods. The diagnostic checking tests, AIC criterion, RACF graph and RPACF graphs, were used for selected model verification. In this study, the best ARIMA models for Annual Maximum Discharge (AMD) time series was (4,1,1) with their AIC value of 88.87. The RACF and RPACF showed residuals’ independence. To forecast AMD for 10 future years, this model showed the ability of the model to predict floods of the river under study in the Karkheh River Basin. Model accuracy was checked by comparing the predicted and observation series by using coefficient of determination (R2).

Application of Subversion Analysis in the Search for the Causes of Cracking in a Marine Engine Injector Nozzle

Subversion analysis is a tool used in the TRIZ (Theory of Inventive Problem Solving) methodology. This article introduces the history and describes the process of subversion analysis, as well as function analysis and analysis of the resources, used at the design stage when generating possible undesirable situations. The article charts the course of subversion analysis when applied to a fuel injection nozzle of a marine engine. The work describes the fuel injector nozzle as a technological system and presents principles of analysis for the causes of a cracked tip of the nozzle body. The system is modelled with functional analysis. A search for potential causes of the damage is undertaken and a cause-and-effect analysis for various hypotheses concerning the damage is drawn up. The importance of particular hypotheses is evaluated and the most likely causes of damage identified.

Assessment of Drug Delivery Systems from Molecular Dynamic Perspective

In this study, we developed and simulated nano-drug delivery systems efficacy in compare to free drug prescription. Computational models can be utilized to accelerate experimental steps and control the experiments high cost. Molecular dynamics simulation (MDS), in particular NAMD was utilized to better understand the anti-cancer drug interaction with cell membrane model. Paclitaxel (PTX) and dipalmitoylphosphatidylcholine (DPPC) were selected for the drug molecule and as a natural phospholipid nanocarrier, respectively. This work focused on two important interaction parameters between molecules in terms of center of mass (COM) and van der Waals interaction energy. Furthermore, we compared the simulation results of the PTX interaction with the cell membrane and the interaction of DPPC as a nanocarrier loaded by the drug with the cell membrane. The molecular dynamic analysis resulted in low energy between the nanocarrier and the cell membrane as well as significant decrease of COM amount in the nanocarrier and the cell membrane system during the interaction. Thus, the drug vehicle showed notably better interaction with the cell membrane in compared to free drug interaction with the cell membrane.

Effect of Assumptions of Normal Shock Location on the Design of Supersonic Ejectors for Refrigeration

The complex oblique shock phenomenon can be simply assumed as a normal shock at the constant area section to simulate a sharp pressure increase and velocity decrease in 1-D thermodynamic models. The assumed normal shock location is one of the greatest sources of error in ejector thermodynamic models. Most researchers consider an arbitrary location without justifying it. Our study compares the effect of normal shock place on ejector dimensions in 1-D models. To this aim, two different ejector experimental test benches, a constant area-mixing ejector (CAM) and a constant pressure-mixing (CPM) are considered, with different known geometries, operating conditions and working fluids (R245fa, R141b). In the first step, in order to evaluate the real value of the efficiencies in the different ejector parts and critical back pressure, a CFD model was built and validated by experimental data for two types of ejectors. These reference data are then used as input to the 1D model to calculate the lengths and the diameters of the ejectors. Afterwards, the design output geometry calculated by the 1D model is compared directly with the corresponding experimental geometry. It was found that there is a good agreement between the ejector dimensions obtained by the 1D model, for both CAM and CPM, with experimental ejector data. Furthermore, it is shown that normal shock place affects only the constant area length as it is proven that the inlet normal shock assumption results in more accurate length. Taking into account previous 1D models, the results suggest the use of the assumed normal shock location at the inlet of the constant area duct to design the supersonic ejectors.

Civic E-Participation in Central and Eastern Europe: A Comparative Analysis

Civic participation is an important aspect of democracy. The contemporary model of democracy is based on citizens' participation in political decision-making (deliberative democracy, participatory democracy). This participation takes many forms of activities like display of slogans and symbols, voting, social consultations, political demonstrations, membership in political parties or organizing civil disobedience. The countries of Central and Eastern Europe after 1989 are characterized by great social, economic and political diversity. Civil society is also part of the process of democratization. Civil society, funded by the rule of law, civil rights, such as freedom of speech and association and private ownership, was to play a central role in the development of liberal democracy. Among the many interpretations of concepts, defining the concept of contemporary democracy, one can assume that the terms civil society and democracy, although different in meaning, nowadays overlap. In the post-communist countries, the process of shaping and maturing societies took place in the context of a struggle with a state governed by undemocratic power. State fraud or repudiation of the institution is a representative state, which in the past was the only way to manifest and defend its identity, but after the breakthrough became one of the main obstacles to the development of civil society. In Central and Eastern Europe, there are many obstacles to the development of civil society, for example, the elimination of economic poverty, the implementation of educational campaigns, consciousness-related obstacles, the formation of social capital and the deficit of social activity. Obviously, civil society does not only entail an electoral turnout but a broader participation in the decision-making process, which is impossible without direct and participative democratic institutions. This article considers such broad forms of civic participation and their characteristics in Central and Eastern Europe. The paper is attempts to analyze the functioning of electronic forms of civic participation in Central and Eastern European states. This is not accompanied by a referendum or a referendum initiative, and other forms of political participation, such as public consultations, participative budgets, or e-Government. However, this paper will broadly present electronic administration tools, the application of which results from both legal regulations and increasingly common practice in state and city management. In the comparative analysis, the experiences of post-communist bloc countries will be summed up to indicate the challenges and possible goals for further development of this form of citizen participation in the political process. The author argues that for to function efficiently and effectively, states need to involve their citizens in the political decision-making process, especially with the use of electronic tools.

Proposal for a Model of Economic Integration for the Development of Industry in Cabinda, Angola

This study aims to present a proposal for an economic integration model for the development of the manufacturing industry in Cabinda, Angola. It seeks to analyze the degree of economic integration of Cabinda and the dynamics of the manufacturing industry. Therefore, in the same way, to gather information to support the decision-making for public financing programs that will aim at the disengagement of the manufacturing industry in Angola and Cabinda in particular. The Cabinda Province is the 18th of Angola, the enclave is located in a privileged area of the African and arable land.

Temperature Dependent Interaction Energies among X (=Ru, Rh) Impurities in Pd-Rich PdX Alloys

We study the temperature dependence of the interaction energies (IEs) of X (=Ru, Rh) impurities in Pd, due to the Fermi-Dirac (FD) distribution and the thermal vibration effect by the Debye-Grüneisen model. The n-body (n=2~4) IEs among X impurities in Pd, being used to calculate the internal energies in the free energies of the Pd-rich PdX alloys, are determined uniquely and successively from the lower-order to higher-order, by the full-potential Korringa-Kohn-Rostoker Green’s function method (FPKKR), combined with the generalized gradient approximation in the density functional theory. We found that the temperature dependence of IEs due to the FD distribution, being usually neglected, is very important to reproduce the X-concentration dependence of the observed solvus temperatures of the Pd-rich PdX (X=Ru, Rh) alloys.

An Improved Single Point Closure Model Based on Dissipation Anisotropy for Geophysical Turbulent Flows

This paper is a continuation of the work carried out by various turbulence modelers in Oceanography on the topic of oceanic turbulent mixing. It evaluates the evolution of ocean water temperature and salinity by the appropriate modeling of turbulent mixing utilizing proper prescription of eddy viscosity. Many modelers in past have suggested including terms like shear, buoyancy and vorticity to be the parameters that decide the slow pressure strain correlation. We add to it the fact that dissipation anisotropy also modifies the correlation through eddy viscosity parameterization. This recalibrates the established correlation constants slightly and gives improved results. This anisotropization of dissipation implies that the critical Richardson’s number increases much beyond unity (to 1.66) to accommodate enhanced mixing, as is seen in reality. The model is run for a couple of test cases in the General Ocean Turbulence Model (GOTM) and the results are presented here.

Strategic Entrepreneurship: Model Proposal for Post-Troika Sustainable Cultural Organizations

Recent literature on issues of Cultural Management (also called Strategic Management for cultural organizations) systematically seeks for models that allow such equipment to adapt to the constant change that occurs in contemporary societies. In the last decade, the world, and in particular Europe has experienced a serious financial problem that has triggered defensive mechanisms, both in the direction of promoting the balance of public accounts and in the sense of the anonymous loss of the democratic and cultural values of each nation. If in the first case emerged the Troika that led to strong cuts in funding for Culture, deeply affecting those organizations; in the second case, the commonplace citizen is seen fighting for the non-closure of cultural equipment. Despite this, the cultural manager argues that there is no single formula capable of solving the need to adapt to change. In another way, it is up to this agent to know the existing scientific models and to adapt them in the best way to the reality of the institution he coordinates. These actions, as a rule, are concerned with the best performance vis-à-vis external audiences or with the financial sustainability of cultural organizations. They forget, therefore, that all this mechanics cannot function without its internal public, without its Human Resources. The employees of the cultural organization must then have an entrepreneurial posture - must be intrapreneurial. This paper intends to break this form of action and lead the cultural manager to understand that his role should be in the sense of creating value for society, through a good organizational performance. This is only possible with a posture of strategic entrepreneurship. In other words, with a link between: Cultural Management, Cultural Entrepreneurship and Cultural Intrapreneurship. In order to prove this assumption, the case study methodology was used with the symbol of the European Capital of Culture (Casa da Música) as well as qualitative and quantitative techniques. The qualitative techniques included the procedure of in-depth interviews to managers, founders and patrons and focus groups to public with and without experience in managing cultural facilities. The quantitative techniques involved the application of a questionnaire to middle management and employees of Casa da Música. After the triangulation of the data, it was proved that contemporary management of cultural organizations must implement among its practices, the concept of Strategic Entrepreneurship and its variables. Also, the topics which characterize the Cultural Intrapreneurship notion (job satisfaction, the quality in organizational performance, the leadership and the employee engagement and autonomy) emerged. The findings show then that to be sustainable, a cultural organization should meet the concerns of both external and internal forum. In other words, it should have an attitude of citizenship to the communities, visible on a social responsibility and a participatory management, only possible with the implementation of the concept of Strategic Entrepreneurship and its variable of Cultural Intrapreneurship.

Optimal Selling Prices for Small Sized Poultry Farmers

In Japan, meat-type chickens are mainly classified into three categories: (1) Broilers, (2) Branded chickens, and (3) Jidori (Free-range local traditional pedigree chickens). The Jidori chickens are certified by the Japanese Ministry of Agriculture, whilst, for the Branded chickens, there is no regulation with respect to their breed (genotype) or methods for rearing them. It is, therefore, relatively easy for poultry farmers to introduce Branded than Jidori chickens. The Branded chickens are normally fed a low-calorie diet with ingredients such as herbs, which lengthens their breeding period (compared with that of the Broilers) and increases their market value. In the field of inventory management, fast-growing animals such as broilers are categorised as ameliorating items. To the best of our knowledge, there are no previous studies that have explicitly considered smaller sized poultry farmers with limited breeding areas. This study develops an inventory model for a small sized poultry farmer that produces both the Broilers (Product 1) and the Branded chickens (Product 2) with different amelioration rates. The poultry farmer’s total profit per unit of time is formulated as a function of selling prices by using a price-dependent demand function. The existence of a unique optimal selling price for each product, which maximises the total profit, established. It has also been confirmed through numerical examples that, when the breeding area is fixed, the total profit could increase if the poultry farmer reduced the product quantity of Product 1 to introduce Product 2.

Analysis and Prediction of the Behavior of the Landslide at Ain El Hammam, Algeria Based on the Second Order Work Criterion

The landslide of Ain El Hammam (AEH) is characterized by a complex geology and a high hydrogeology hazard. AEH's perpetual reactivation compels us to look closely at its triggers and to better understand the mechanisms of its evolution in mass and in depth. This study builds a numerical model to simulate the influencing factors such as precipitation, non-saturation, and pore pressure fluctuations, using Plaxis software. For a finer analysis of instabilities, we use Hill's criterion, based on the sign of the second order work, which is the most appropriate material stability criterion for non-associated elastoplastic materials. The results of this type of calculation allow us, in theory, to predict the shape and position of the slip surface(s) which are liable to ground movements of the slope, before reaching the rupture given by the plastic limit of Mohr Coulomb. To validate the numerical model, an analysis of inclinometer measures is performed to confirm the direction of movement and kinematic of the sliding mechanism of AEH’s slope.

A Comparative Analysis of the Performance of COSMO and WRF Models in Quantitative Rainfall Prediction

The Numerical weather prediction (NWP) models are considered powerful tools for guiding quantitative rainfall prediction. A couple of NWP models exist and are used at many operational weather prediction centers. This study considers two models namely the Consortium for Small–scale Modeling (COSMO) model and the Weather Research and Forecasting (WRF) model. It compares the models’ ability to predict rainfall over Uganda for the period 21st April 2013 to 10th May 2013 using the root mean square (RMSE) and the mean error (ME). In comparing the performance of the models, this study assesses their ability to predict light rainfall events and extreme rainfall events. All the experiments used the default parameterization configurations and with same horizontal resolution (7 Km). The results show that COSMO model had a tendency of largely predicting no rain which explained its under–prediction. The COSMO model (RMSE: 14.16; ME: -5.91) presented a significantly (p = 0.014) higher magnitude of error compared to the WRF model (RMSE: 11.86; ME: -1.09). However the COSMO model (RMSE: 3.85; ME: 1.39) performed significantly (p = 0.003) better than the WRF model (RMSE: 8.14; ME: 5.30) in simulating light rainfall events. All the models under–predicted extreme rainfall events with the COSMO model (RMSE: 43.63; ME: -39.58) presenting significantly higher error magnitudes than the WRF model (RMSE: 35.14; ME: -26.95). This study recommends additional diagnosis of the models’ treatment of deep convection over the tropics.

Evaluating the Capability of the Flux-Limiter Schemes in Capturing the Turbulence Structures in a Fully Developed Channel Flow

Turbulence modelling is still evolving, and efforts are on to improve and develop numerical methods to simulate the real turbulence structures by using the empirical and experimental information. The monotonically integrated large eddy simulation (MILES) is an attractive approach for modelling turbulence in high Re flows, which is based on the solving of the unfiltered flow equations with no explicit sub-grid scale (SGS) model. In the current work, this approach has been used, and the action of the SGS model has been included implicitly by intrinsic nonlinear high-frequency filters built into the convection discretization schemes. The MILES solver is developed using the opensource CFD OpenFOAM libraries. The role of flux limiters schemes namely, Gamma, superBee, van-Albada and van-Leer, is studied in predicting turbulent statistical quantities for a fully developed channel flow with a friction Reynolds number, ReT = 180, and compared the numerical predictions with the well-established Direct Numerical Simulation (DNS) results for studying the wall generated turbulence. It is inferred from the numerical predictions that Gamma, van-Leer and van-Albada limiters produced more diffusion and overpredicted the velocity profiles, while superBee scheme reproduced velocity profiles and turbulence statistical quantities in good agreement with the reference DNS data in the streamwise direction although it deviated slightly in the spanwise and normal to the wall directions. The simulation results are further discussed in terms of the turbulence intensities and Reynolds stresses averaged in time and space to draw conclusion on the flux limiter schemes performance in OpenFOAM context.