Fatty Acid Profile of Meat from Lambs Fed on Diets Containing Mulberry Hay

The aim of this trial was to evaluate fatty acid profile of meat from lambs fed on diets containing 0, 12.5 and 25.0% mulberry hay as a substitute for the concentrate. Twenty-four feedlot Ile de France lambs (average weight of 15kg and average age of 60 days) were randomized to receive the different diets and slaughtered at 32kg body weight. Increases were observed in the concentrations of the saturated pentadecanoic, heptadecanoic and arachidic fatty acids; of the monounsaturated nervonic fatty acid and of the polyunsaturated α-linolenic, ɣ-linolenic and eicosapentaenoic fatty acids. Increased conjugated linoleic acid (CLA) was also found in the meat of lambs fed on 12.5% mulberry hay. In addition, the omega-3 composition was augmented, while the omega-3/omega-6 ratio was decreased in mulberry hay-fed animals. In conclusion, a more desirable fatty acid profile was observed in lamb meat following the substitution of mulberry hay in the concentrate of fed, resulting in improved nutritional characteristics of the meat.

Influence of Deficient Materials on the Reliability of Reinforced Concrete Members

The strength of reinforced concrete depends on the member dimensions and material properties. The properties of concrete and steel materials are not constant but random variables. The variability of concrete strength is due to batching errors, variations in mixing, cement quality uncertainties, differences in the degree of compaction and disparity in curing. Similarly, the variability of steel strength is attributed to the manufacturing process, rolling conditions, characteristics of base material, uncertainties in chemical composition, and the microstructure-property relationships. To account for such uncertainties, codes of practice for reinforced concrete design impose resistance factors to ensure structural reliability over the useful life of the structure. In this investigation, the effects of reductions in concrete and reinforcing steel strengths from the nominal values, beyond those accounted for in the structural design codes, on the structural reliability are assessed. The considered limit states are flexure, shear and axial compression based on the ACI 318-11 structural concrete building code. Structural safety is measured in terms of a reliability index. Probabilistic resistance and load models are compiled from the available literature. The study showed that there is a wide variation in the reliability index for reinforced concrete members designed for flexure, shear or axial compression, especially when the live-to-dead load ratio is low. Furthermore, variations in concrete strength have minor effect on the reliability of beams in flexure, moderate effect on the reliability of beams in shear, and sever effect on the reliability of columns in axial compression. On the other hand, changes in steel yield strength have great effect on the reliability of beams in flexure, moderate effect on the reliability of beams in shear, and mild effect on the reliability of columns in axial compression. Based on the outcome, it can be concluded that the reliability of beams is sensitive to changes in the yield strength of the steel reinforcement, whereas the reliability of columns is sensitive to variations in the concrete strength. Since the embedded target reliability in structural design codes results in lower structural safety in beams than in columns, large reductions in material strengths compromise the structural safety of beams much more than they affect columns.

A Cross-Gender Statistical Analysis of Tuvinian Intonation Features in Comparison With Uzbek and Azerbaijani

The paper deals with cross-gender and cross-linguistic comparison of pitch characteristics for Tuvinian with two other Turkic languages - Uzbek and Azerbaijani, based on the results of statistical analysis of pitch parameter values and intonation patterns used by male and female speakers. The main goal of our work is to obtain the ranges of pitch parameter values typical for Tuvinian speakers for the purpose of automatic language identification. We also propose a cross-gender analysis of declarative intonation in the poorly studied Tuvinian language. The ranges of pitch parameter values were obtained by means of specially developed software that deals with the distribution of pitch values and allows us to obtain statistical language-specific pitch intervals.

Sensitivity Analysis of Principal Stresses in Concrete Slab of Rigid Pavement Made From Recycled Materials

Complex sensitivity analysis of stresses in a concrete slab of the real type of rigid pavement made from recycled materials is performed. The computational model of the pavement is designed as a spatial (3D) model, is based on a nonlinear variant of the finite element method that respects the structural nonlinearity, enables to model different arrangements of joints, and the entire model can be loaded by the thermal load. Interaction of adjacent slabs in joints and contact of the slab and the subsequent layer are modeled with the help of special contact elements. Four concrete slabs separated by transverse and longitudinal joints and the additional structural layers and soil to the depth of about 3m are modeled. The thickness of individual layers, physical and mechanical properties of materials, characteristics of joints, and the temperature of the upper and lower surface of slabs are supposed to be random variables. The modern simulation technique Updated Latin Hypercube Sampling with 20 simulations is used. For sensitivity analysis the sensitivity coefficient based on the Spearman rank correlation coefficient is utilized. As a result, the estimates of influence of random variability of individual input variables on the random variability of principal stresses s1 and s3 in 53 points on the upper and lower surface of the concrete slabs are obtained.

Use of Treated Municipal Wastewater on Artichoke Crop

Results of a field study carried out at Trinitapoli (Puglia region, southern Italy) on the irrigation of an artichoke crop with three types of water (secondary-treated wastewater, SW; tertiary-treated wastewater, TW; and freshwater, FW) are reported. Physical, chemical and microbiological analyses were performed on the irrigation water, and on soil and yield samples. The levels of most of the chemical parameters, such as electrical conductivity, total suspended solids, Na+, Ca2+, Mg+2, K+, sodium adsorption ratio, chemical oxygen demand, biological oxygen demand over 5 days, NO3 –N, total N, CO32, HCO3, phenols and chlorides of the applied irrigation water were significantly higher in SW compared to GW and TW. No differences were found for Mg2+, PO4-P, K+ only between SW and TW. Although the chemical parameters of the three irrigation water sources were different, few effects on the soil were observed. Even though monitoring of Escherichia coli showed high SW levels, which were above the limits allowed under Italian law (DM 152/2006), contamination of the soil and the marketable yield were never observed. Moreover, no Salmonella spp. were detected in these irrigation waters; consequently, they were absent in the plants. Finally, the data on the quantitative-qualitative parameters of the artichoke yield with the various treatments show no significant differences between the three irrigation water sources. Therefore, if adequately treated, municipal wastewater can be used for irrigation and represents a sound alternative to conventional water resources.

Characteristics of Hydraulic Jump

The effect of an abruptly expanding channel on the main characteristics of hydraulic jump is considered experimentally. The present study was made for supercritical flow of Froude number varying between 2 to 9 and approach to expanded channel width ratios 0.4, 0.5, 0.6 and 0.8. Physical explanations of the variation of these characteristics under varying flow conditions are discussed based on the observation drawn from experimental results. The analytical equation for the sequent depth ratio in an abruptly expanding channel as given by eminent hydraulic engineers are verified well with the experimental data for all expansion ratios, and the empirical relation was also verified with the present experimental data.

Proximate Composition and Textural Properties of Cooked Sausages Formulated from Mechanically Deboned Chicken Meat with Addition of Chicken Offal

Proximate composition (moisture, protein, total fat, and total ash) and textural characteristics (hardness, adhesiveness, springiness, cohesiveness, chewiness and firmness and work of shear) of cooked sausages formulated from mechanically deboned chicken meat (MDCM) with addition of chicken offal (heart, gizzard or liver) were investigated. Chicken offal replaced equal weight (15 kg) of MDCM in standard sausage formulation. Regarding proximate composition sausage with heart addition was significantly (P

Sensory Characterization of Cookies with Chestnut Flour

In this work sensory characteristics of cookies with different amount of chestnut flour were determined by sensory and instrumental methods. The wheat flour for cookies was substituted with chestnut flour in three different levels (20, 40 and 60%) and the dough moisture was 22%. The control sample was with 100% of wheat flour. Sensory quality of the cookies was described using quantity descriptive method (QDA) by six trained members of descriptive panel. Instrumental evaluation included texture characterization by texture analyzer, the color measurements (CIE L*a*b* system) and determination by videometer. The samples with 20% of chestnut flour were with highest ponderated score for overall sensory impression (17.6), which is very close to score for control sample (18). Increase in amount of chestnut flour caused decrease in scores for all sensory properties, thus overall sensory score decreased also. Compared to control sample and with increase in amount of chestnut flour, instrumental determination of the samples confirmed the sensory analysis results. The hardness of the cookies increased, as well as the values of red a* and yellow (b*) component coordinate, but the values for lightness (L*) decreased. Also the values, evaluated by videometer at defined wavelength, were the highest for control cookies and decreased with increase in amount of chestnut flour.

Comparison between the Conventional Methods and PSO Based MPPT Algorithm for Photovoltaic Systems

Since the output characteristics of photovoltaic (PV) system depends on the ambient temperature, solar radiation and load impedance, its maximum power point (MPP) is not constant. Under each condition PV module has a point at which it can produce its MPP. Therefore, a maximum power point tracking (MPPT) method is needed to uphold the PV panel operating at its MPP. This paper presents comparative study between the conventional MPPT methods used in (PV) system: Perturb and Observe (P&O), Incremental Conductance (IncCond), andParticle Swarm Optimization (PSO) algorithmfor (MPPT) of (PV) system. To evaluate the study, the proposed PSO MPPT is implemented on a DC-DC cuk converter and has been compared with P&O and INcond methods in terms of their tracking speed, accuracy and performance by using the Matlab tool Simulink. The simulation result shows that the proposed algorithm is simple, and is superior to the P&O and IncCond methods.

Multi Response Optimization in Drilling Al6063/SiC/15% Metal Matrix Composite

This investigation proposes a grey-based Taguchi method to solve the multi-response problems. The grey-based Taguchi method is based on the Taguchi’s design of experimental method, and adopts grey relational analysis (GRA) to transfer multi-response problems into single-response problems. In this investigation, an attempt has been made to optimize the drilling process parameters considering weighted output response characteristics using grey relational analysis. The output response characteristics considered are surface roughness, burr height and hole diameter error under the experimental conditions of cutting speed, feed rate, step angle, and cutting environment. The drilling experiments were conducted using L27 orthogonal array. A combination of orthogonal array, design of experiments and grey relational analysis was used to ascertain best possible drilling process parameters that give minimum surface roughness, burr height and hole diameter error. The results reveal that combination of Taguchi design of experiment and grey relational analysis improves surface quality of drilled hole. 

Probiotic Properties of Lactic Acid Bacteria Isolated from Fermented Food

The objectives of this study were to isolate LAB from various sources, dietary supplement, Thai traditional fermented food, and freshwater fish and to characterize their potential as probiotic cultures. Out of 1,558 isolates, 730 were identified as LAB based on isolation on MRS agar supplemented with a bromocresol purple indicator&CaCO3 and Gram-positive, catalase- and oxidase-negative characteristics. Eight isolates showed the potential probiotic properties including tolerance to acid, bile salt & heat, proteolytic, amylolytic & lipolytic activities and oxalate-degrading capability. They all showed the antimicrobial activity against some Gram-negative and Gram-positive pathogenic bacteria. Based on 16S rDNA sequence analysis, they were identified as Enterococcus faecalis BT2 & MG30, Leconostoc mesenteroides SW64 and Pediococcus pentosaceous BD33, CF32, NP6, PS34 & SW5. The health beneficial effects and food safety will be further investigated and developed as a probiotic or protective culture used in Nile tilapia belly flap meat fermentation.

Gravitational Search Algorithm (GSA) Optimized SSSC Based Facts Controller to Improve Power System Oscillation Stability

In this paper, an investigation into the use of modified Genetic Algorithm optimized SSSC based controller to aid damping of low frequency inter-area oscillations in power systems is presented. Controller design is formulated as a nonlinear constrained optimization problem and modified Genetic Algorithm (MGA) is employed to search for the optimal controller parameters. For evaluation of effectiveness and robustness of proposed controllers, the performance was tested on multi-machine system subjected to different disturbances, loading conditions and system parameter variations. Simulation results are presented to show the fine performance of the proposed SSSC controller in damping the critical modes without significantly deteriorating the damping characteristics of other modes in multi-machine power system.

Characterization of 3D-MRP for Analyzing of Brain Balancing Index (BBI) Pattern

This paper discusses on power spectral density (PSD) characteristics which are extracted from three-dimensional (3D) electroencephalogram (EEG) models. The EEG signal recording was conducted on 150 healthy subjects. Development of 3D EEG models involves pre-processing of raw EEG signals and construction of spectrogram images. Then, the values of maximum PSD were extracted as features from the model. These features are analyzed using mean relative power (MRP) and different mean relative power (DMRP) technique to observe the pattern among different brain balancing indexes. The results showed that by implementing these techniques, the pattern of brain balancing indexes can be clearly observed. Some patterns are indicates between index 1 to index 5 for left frontal (LF) and right frontal (RF).

Influence of Propeller Blade Lift Distribution on Whirl Flutter Stability Characteristics

This paper deals with the whirl flutter of the turboprop aircraft structures. It is focused on the influence of the blade lift span-wise distribution on the whirl flutter stability. Firstly it gives the overall theoretical background of the whirl flutter phenomenon. After that the propeller blade forces solution and the options of the blade lift modeling are described. The problem is demonstrated on the example of a twin turboprop aircraft structure. There are evaluated the influences with respect to the propeller aerodynamic derivatives and finally the influences to the whirl flutter speed and the whirl flutter margin respectively.

LIDAR Obstacle Warning and Avoidance System for Unmanned Aircraft

The availability of powerful eye-safe laser sources and the recent advancements in electro-optical and mechanical beam-steering components have allowed laser-based Light Detection and Ranging (LIDAR) to become a promising technology for obstacle warning and avoidance in a variety of manned and unmanned aircraft applications. LIDAR outstanding angular resolution and accuracy characteristics are coupled to its good detection performance in a wide range of incidence angles and weather conditions, providing an ideal obstacle avoidance solution, which is especially attractive in low-level flying platforms such as helicopters and small-to-medium size Unmanned Aircraft (UA). The Laser Obstacle Avoidance Marconi (LOAM) system is one of such systems, which was jointly developed and tested by SELEX-ES and the Italian Air Force Research and Flight Test Centre. The system was originally conceived for military rotorcraft platforms and, in this paper, we briefly review the previous work and discuss in more details some of the key development activities required for integration of LOAM on UA platforms. The main hardware and software design features of this LOAM variant are presented, including a brief description of the system interfaces and sensor characteristics, together with the system performance models and data processing algorithms for obstacle detection, classification and avoidance. In particular, the paper focuses on the algorithm proposed for optimal avoidance trajectory generation in UA applications.

Dual Band Microstrip Patch Antenna for IEEE802.11b Application

In this paper, the design of a coaxial feed single layer rectangular microstrip patch antenna for IEEE802.11b application is presented. The proposed antenna is designed by using substrate FR4_epoxy having permittivity of about 4.4 and tangent loss of 0.013. The characteristics of the substrate are designed and to evaluate the performance of modeled antenna using HFSS v.11 EM simulator, from Ansoft. The proposed antenna dual resonant frequency has been achieved in the band of 1.57GHz-1.68GHz (with BW 30 MHz) and 2.25 GHz -2.55GHz (with BW 40MHz). The simulation results with frequency response, radiation pattern and return loss, VSWR, Input Impedance are presented with appropriate table and graph.

Impact Porous Dielectric Silica Gel for Operating Voltage and Power Discharge Reactor

This study examined the effect of porous dielectric silica gel the discharge ignition voltage and input power in a plasma reactor. For the experiment was used a plasma reactor with two mesh electrodes made of stainless steel with a mesh size of 0.1x0.1mm. The study analyzed and compared with parameters such as power, ignition and operation voltage of the reactor for two dielectrics a porous and glass. During experiment were observed several new phenomena conducted for porous dielectric. The first phenomenon was the reduction the ignition voltage discharge to volume around few hundred volts. Second it was increase input power six times more compared with power those obtained for the glass dielectric. Thirdly difference it is ΔV between ignition voltage Vi and operating voltage reactor Vm for porous dielectric it was 11%, while ΔV for the glass dielectric it was 60%. Also change the discharge characteristics from DBD for glass dielectric to the streamer resistance discharge for the porous dielectric.

Entrepreneurial Predisposition and Intention of Students from the IFRN – Mossoró, Brazil

IFRN – Mossoró is a Brazilian technical education institute that develops several activities to encourage entrepreneurship, such as a curricular discipline about enterprise management and the existence of a business incubator. Despite efforts, the business incubator does not produce the expected effects. Therefore, what predisposes students to start their own business? If literature review explores determinant factors like the family and personal characteristics, it can be sustained that entrepreneurship skills can be taught since primary level, until university level. This paper presents the results of research project “Empreende IFRN” to understand the entrepreneurial predisposition and intention of the students from technical level courses. Data from 365 students from technical level courses reveal an increased entrepreneurial intention of students during time (from a 2 years period to someday in the future). The entrepreneurial behavior of parents affects students’ perception about starting their own business. Students also present a cautions behavior, preferring bank deposit and investment fund instead starting a business.

SMEs Access to Finance in Croatia – Model Approach

The goals of the research include the determination of the characteristics of SMEs finance in Croatia, as well as the determination of indirect growth rates of the information model of the entrepreneurs` perception of business environment. The research results show that cost of finance and access to finance are most important constraining factor in setting up and running the business of small entrepreneurs in Croatia. Furthermore, small entrepreneurs in Croatia are significantly dissatisfied with the administrative barriers although relatively to a lesser extent than was the case in the pre crisis time. High collateral requirement represents the main characteristic of bank lending concerning SMEs followed by long credit elaboration process. Formulated information model has defined the individual impact of indirect growth rates of the remaining variables on the model’s specific variable.

Urban Planning Formulation Problems in China and the Corresponding Optimization Ideas under the Vision of the Hypercycle Theory

Systematic Science reveals the complex nonlinear mechanisms of behavior in urban system. However, when confronted with such system, most city planners in China are still utilizing simple linear thinking to learn and understand this open complex giant system. In this paper, the hypercycle theory was introduced, which is one of the basis theories of systematic science. Based on the analysis of the reasons for the failure of current urban planning in China, and in consideration of the nonlinear characteristics of the urban system as well, optimization ideas for urban planning formulation were presented such as the shift from blueprint planning to progressive planning and from the rigid urban planning management control to its dynamically monitor and in time feedback.