Unnoticeable Mumps Infection in India: Does MMR Vaccine Protect against Circulating Mumps Virus Genotype C?

MMR vaccine failure had been reported globally and here we report that it occurs now in India. Samples were collected from clinically suspected mumps cases were subjected for anti mumps antibodies, virus isolation, RT-PCR, sequencing and phylogenetic tree analysis. 56 samples collected from men and women belonging to various age groups. 30 had been vaccinated and the status of 26 patients was unknown. 28 out of 30 samples were found to be symptomatic and positive for Mumps IgM, indicating active mumps infection in 93.4% of the vaccinated population. A phylogenetic tree comparison of the clinical isolate is shown to be genotype C which is distinct from vaccine strain. Our study clearly sending warning signs that MMR vaccine is a failure and it needs to be revamped for the human use by increasing its efficacy and efficiency.

Agent-Based Simulation of Simulating Anticipatory Systems – Classification

The present paper is oriented to classification and application of agent technique in simulation of anticipatory systems, namely those that use simulation models for the aid of anticipation. The main ideas root in the fact that the best way for description of computer simulation models is the technique of describing the simulated system itself (and the translation into the computer code is provided as automatic), and that the anticipation itself is often nested.

Effect of Ply Orientation on Roughness for the Trimming Process of CFRP Laminates

The machining of Carbon Fiber Reinforced Plastics has come to constitute a significant challenge for many fields of industry. The resulting surface finish of machined parts is of primary concern for several reasons, including contact quality and impact on the assembly. Therefore, the characterization and prediction of roughness based on machining parameters are crucial for costeffective operations. In this study, a PCD tool comprised of two straight flutes was used to trim 32-ply carbon fiber laminates in a bid to analyze the effects of the feed rate and the cutting speed on the surface roughness. The results show that while the speed has but a slight impact on the surface finish, the feed rate for its part affects it strongly. A detailed study was also conducted on the effect of fiber orientation on surface roughness, for quasi-isotropic laminates used in aerospace. The resulting roughness profiles for the four-ply orientation lay-up were compared, and it was found that fiber angle is a critical parameter relating to surface roughness. One of the four orientations studied led to very poor surface finishes, and characteristic roughness profiles were identified and found to only relate to the ply orientations of multilayer carbon fiber laminates.

Development of an Intelligent Tool for Planning the Operation

Several optimization algorithms specifically applied to the problem of Operation Planning of Hydrothermal Power Systems have been developed and are used. Although providing solutions to various problems encountered, these algorithms have some weaknesses, difficulties in convergence, simplification of the original formulation of the problem, or owing to the complexity of the objective function. Thus, this paper presents the development of a computational tool for solving optimization problem identified and to provide the User an easy handling. Adopted as intelligent optimization technique, Genetic Algorithms and programming language Java. First made the modeling of the chromosomes, then implemented the function assessment of the problem and the operators involved, and finally the drafting of the graphical interfaces for access to the User. The program has managed to relate a coherent performance in problem resolution without the need for simplification of the calculations together with the ease of manipulating the parameters of simulation and visualization of output results.

Schedule Management of an Enterprise Receiving Orders Considering Dependency between Unit Tasks of a Collaborative Project

This study suggests how an order-receiving company can avoid disclosing schedule information on unit tasks to the order-placing company when carrying out a collaborative project on the value chain in an order-oriented industry. Specifically, it suggests methods for keeping schedule information confidential, and categorizes potential situations by inter-task dependency. Lastly, an approach to select the most optimal non-disclosure method is discussed. With the methods for not disclosing work-related information suggested in the study, order-receiving companies can logically deal with political issues relating to the question of whether or not to disclose information upon the execution of a collaborative project in cooperation with an order-placing firm. Moreover, order-placing companies can monitor undistorted information, while respecting the legitimate rights of an order-receiving company. Therefore, it is fair to say that the suggestions made in this study will contribute to the smooth operation of collaborative intercompany projects.

Auto-Selective Three Term Control of Position and Compliance of a Pneumatic Actuator

Due to their high power-to-weight ratio and low cost, pneumatic actuators are attractive for robotics and automation applications; however, achieving fast and accurate control of their position have been known as a complex control problem. The paper presents a methodology for obtaining controllers that achieve high position accuracy and preserve the closed-loop characteristics over a broad operating range. Experimentation with a number of conventional (or "classical") three-term controllers shows that, as repeated operations accumulate, the characteristics of the pneumatic actuator change requiring frequent re-tuning of the controller parameters (PID gains). Furthermore, three-term controllers are found to perform poorly in recovering the closed-loop system after the application of load or other external disturbances. The key reason for these problems lies in the non-linear exchange of energy inside the cylinder relating, in particular, to the complex friction forces that develop on the piston-wall interface. In order to overcome this problem but still remain within the boundaries of classical control methods, we designed an auto selective classicaql controller so that the system performance would benefit from all three control gains (KP, Kd, Ki) according to system requirements and the characteristics of each type of controller. This challenging experimentation took place for consistent performance in the face of modelling imprecision and disturbances. In the work presented, a selective PID controller is presented for an experimental rig comprising an air cylinder driven by a variable-opening pneumatic valve and equipped with position and pressure sensors. The paper reports on tests carried out to investigate the capability of this specific controller to achieve consistent control performance under, repeated operations and other changes in operating conditions.

Perceptual Framework for a Modern Left-Turn Collision Warning System

Most of the collision warning systems currently available in the automotive market are mainly designed to warn against imminent rear-end and lane-changing collisions. No collision warning system is commercially available to warn against imminent turning collisions at intersections, especially for left-turn collisions when a driver attempts to make a left-turn at either a signalized or non-signalized intersection, conflicting with the path of other approaching vehicles traveling on the opposite-direction traffic stream. One of the major factors that lead to left-turn collisions is the human error and misjudgment of the driver of the turning vehicle when perceiving the speed and acceleration of other vehicles traveling on the opposite-direction traffic stream; therefore, using a properly-designed collision warning system will likely reduce, or even eliminate, this type of collisions by reducing human error. This paper introduces perceptual framework for a proposed collision warning system that can detect imminent left-turn collisions at intersections. The system utilizes a commercially-available detection sensor (either a radar sensor or a laser detector) to detect approaching vehicles traveling on the opposite-direction traffic stream and calculate their speeds and acceleration rates to estimate the time-tocollision and compare that time to the time required for the turning vehicle to clear the intersection. When calculating the time required for the turning vehicle to clear the intersection, consideration is given to the perception-reaction time of the driver of the turning vehicle, which is the time required by the driver to perceive the message given by the warning system and react to it by engaging the throttle. A regression model was developed to estimate perception-reaction time based on age and gender of the driver of the host vehicle. Desired acceleration rate selected by the driver of the turning vehicle, when making the left-turn movement, is another human factor that is considered by the system. Another regression model was developed to estimate the acceleration rate selected by the driver of the turning vehicle based on driver-s age and gender as well as on the location and speed of the nearest approaching vehicle along with the maximum acceleration rate provided by the mechanical characteristics of the turning vehicle. By comparing time-to-collision with the time required for the turning vehicle to clear the intersection, the system displays a message to the driver of the turning vehicle when departure is safe. An application example is provided to illustrate the logic algorithm of the proposed system.

The Economic Cost of Health and Safety in Work Places: An Approach on the Costs Calculating Model

One of the important steps in a safety and risk management system is the economical evaluation of occupational accident and diseases costs in order to decrease accidents from reoccurring in the workplace. This study proposed a plausible method for calculating occupational accident costs and illnesses in work place. This method design for cost estimation takes into account both the personnel, organizational level as well as the community level especially intended for an Iranian work place. The research indicates that a using systematic method for calculating costs which also provides risk evaluation can help managers to plan correctly the investment in health and safety measures. Using this method is that not only is it comprehensive, easy and practical and could be applied in practice by a manager within a short period of time but it also shows the importance of accident costs as well as calculates the real cost of an accident and illnesses.

Minimization of Non-Productive Time during 2.5D Milling

In the modern manufacturing systems, the use of thermal cutting techniques using oxyfuel, plasma and laser have become indispensable for the shape forming of high quality complex components; however, the conventional chip removal production techniques still have its widespread space in the manufacturing industry. Both these types of machining operations require the positioning of end effector tool at the edge where the cutting process commences. This repositioning of the cutting tool in every machining operation is repeated several times and is termed as non-productive time or airtime motion. Minimization of this non-productive machining time plays an important role in mass production with high speed machining. As, the tool moves from one region to the other by rapid movement and visits a meticulous region once in the whole operation, hence the non-productive time can be minimized by synchronizing the tool movements. In this work, this problem is being formulated as a general travelling salesman problem (TSP) and a genetic algorithm approach has been applied to solve the same. For improving the efficiency of the algorithm, the GA has been hybridized with a noble special heuristic and simulating annealing (SA). In the present work a novel heuristic in the combination of GA has been developed for synchronization of toolpath movements during repositioning of the tool. A comparative analysis of new Meta heuristic techniques with simple genetic algorithm has been performed. The proposed metaheuristic approach shows better performance than simple genetic algorithm for minimization of nonproductive toolpath length. Also, the results obtained with the help of hybrid simulated annealing genetic algorithm (HSAGA) are also found better than the results using simple genetic algorithm only.

Continuity Microplating using Image Processing

A real time image-guided electroplating system is proposed in this paper. Unlike previous electroplating systems, instead of using the intermittent mode to electroplate 500um long copper specimen, a CCD camera and a motion controller are used to adjust anode-cathode distance to obtain better results. Since the image of the gap distance is highly deteriorated due to complex chemical-electrical operation inside the electrolyte, to determine the gap distance, an image processing algorithm is developed and mainly based on the entropy and energy values. In addition, the color and incidence direction of light source are also discussed to help the image process in this paper. From the experiment results, the specimens created by the proposed system show better structure, better uniformity and better finishing surface compared to those by previous intermittent electroplating setup.

Pharmacology Applied Learning Program in Preclinical Years – Student Perspectives

Pharmacology curriculum plays an integral role in medical education. Learning pharmacology to choose and prescribe drugs is a major challenge encountered by students. We developed pharmacology applied learning activities for first year medical students that included realistic clinical situations with escalating complications which required the students to analyze the situation and think critically to choose a safe drug. Tutor feedback was provided at the end of session. Evaluation was done to assess the students- level of interest and usefulness of the sessions in rational selection of drugs. Majority (98 %) of the students agreed that the session was an extremely useful learning exercise and agreed that similar sessions would help in rational selection of drugs. Applied learning sessions in the early years of medical program may promote deep learning and bridge the gap between pharmacology theory and clinical practice. Besides, it may also enhance safe prescribing skills.

Some Immunological Characteristics of Tick- Borne Encephalitis in Perm Region

It is shown that the relationship of tick-borne encephalitis virus with the human body comes in two ways, the development of acute infection with the outcome in convalescence and long stay by the virus in the body, its persistence in the nervous tissue with periodic reactivation and prolonged circulating immunoglobulin M. In spite of the fact that tick-borne encephalitis virus has a tropism for nerve tissue, involvement in the process of blood cells is an integral component of the infection. Comprehensive study of the relation of factors of innate and adaptive immunity in the tick-borne encephalitis providing insight into the features of chronic disease.

The Effectiveness of Ultrasound Treatment on the Germination Stimulation of Barley Seed and its Alpha-Amylase Activity

In the present study, the effects of ultrasound as emerging technology were investigated on germination stimulation, amount of alpha-amylase activity on dry barley seeds before steeping stage of malting process. All experiments were carried out at 20 KHz on the ultrasonic generator in 3 different ultrasonic intensities (20, 60 and 100% setting from total power of device) and time (5, 10 and 15 min) at constant temperature (30C). For determining the effects of these parameters on enzyme the Fuwa method assay based on the decreased staining value of blue starch–iodine complexes employed for measurement an activity. The results of these assays were analyzed by Qualitek4 software using the Taguchi statistical method to evaluate the factor-s effects on enzyme activity. It has been found that when malting barley is irradiated with an ultrasonic power, a stimulating effect occurs as to the enzyme activity.

Oral Cancer Screening Intentions of Residents in Eastern Taiwan

The incidence of oral cancer in Taiwan increased year by year. It replaced the nasopharyngeal as the top incurrence among head and neck cancers since 1994. Early examination and earlier identification for earlier treatment is the most effective medical treatment for these cancers. Although the government fully subsidized the expenses with tremendous promotion program for oral cancer screening, the citizen-s participation remained low. Purpose of this study is to understand the factors affecting the citizens- behavior intensions of taking an oral cancer screening. Based on the Theory of Planned Behavior, this study adopted four distinctive variables in explaining the captioned behavior intentions.700 questionnaires were dispatched with 500 valid responses or 71.4% returned by the citizens with an age 30 or above from the eastern counties of Taiwan. Test results has shown that attitude toward, subjective norms of, and perceived behavioral control over the oral cancer screening varied from some demographic factors to another. The study proofed that attitude toward, subjective norms of, and perceived behavioral control over the oral cancer screening had positive impacts on the corresponding behavior intention. The test concluded that the theory of planned behavior was appropriate as a theoretical framework in explaining the influencing factors of intentions of taking oral cancer screening. This study suggested the healthcare professional should provide high accessibility of screening services other than just delivering knowledge on oral cancer to promote the citizens- intentions of taking the captioned screening. This research also provided a practical implication to the healthcare professionals when formulating and implementing promotion instruments for lifting the screening rate of oral cancer.

Structural and Optical Properties of Ce3+ Doped YPO4: Nanophosphors Synthesis by Sol Gel Method

Recently, nanomaterials are developed in the form of nano-films, nano-crystals and nano-pores. Lanthanide phosphates as a material find extensive application as laser, ceramic, sensor, phosphor, and also in optoelectronics, medical and biological labels, solar cells and light sources. Among the different kinds of rare-earth orthophosphates, yttrium orthophosphate has been shown to be an efficient host lattice for rare earth activator ions, which have become a research focus because of their important role in the field of light display systems, lasers, and optoelectronic devices. It is in this context that the 4fn- « 4fn-1 5d transitions of rare earth in insulating materials, lying in the UV and VUV, are the aim of large number of studies .Though there has been a few reports on Eu3+, Nd3+, Pr3+,Er3+, Ce3+, Tm3+ doped YPO4. The 4fn- « 4fn-1 5d transitions of the rare earth dependent to the host-matrix, several matrices ions were used to study these transitions, in this work we are suggesting to study on a very specific class of inorganic material that are orthophosphate doped with rare earth ions. This study focused on the effect of Ce3+ concentration on the structural and optical properties of Ce3+ doped YPO4 yttrium orthophosphate with powder form prepared by the Sol Gel method.

Solving Facility Location Problem on Cluster Computing

Computation of facility location problem for every location in the country is not easy simultaneously. Solving the problem is described by using cluster computing. A technique is to design parallel algorithm by using local search with single swap method in order to solve that problem on clusters. Parallel implementation is done by the use of portable parallel programming, Message Passing Interface (MPI), on Microsoft Windows Compute Cluster. In this paper, it presents the algorithm that used local search with single swap method and implementation of the system of a facility to be opened by using MPI on cluster. If large datasets are considered, the process of calculating a reasonable cost for a facility becomes time consuming. The result shows parallel computation of facility location problem on cluster speedups and scales well as problem size increases.

Nitrogen Dynamics and Removal by Algal Turf Scrubber under High Ammonia and Organic Matter Loading in a Recirculating Aquaculture System

A study was undertaken to assess the potential of an Algal Turf Scrubber to remove nitrogen from aquaculture effluent to reduce environmental pollution. High total ammonia nitrogen concentrations were introduced to an Algal Turf Scrubber developed under varying hydraulic surface loading rates of African catfish (Clarius gariepinus) effluent in a recirculating aquaculture system. Nutrient removal rates were not affected at total suspended solids concentration of up to 0.04g TSS/l (P > 0.05). Nitrogen removal rates 0.93-0.99g TAN/m²/d were recorded at very high loading rates 3.76-3.81 g TAN/m²/d. Total ammonia removal showed ½ order kinetics between 1.6 to 2.3mg/l Total Ammonia Nitrogen concentrations. Nitrogen removal increased with its loading, which increased with hydraulic surface loading rate. Total Ammonia Nitrogen removal by Algal turf scrubber was higher than reported values for fluidized bed filters and trickling filters. The algal turf scrubber also effectively removed nitrate thereby reducing the need for water exchange.

Network State Classification based on the Statistical properties of RTT for an Adaptive Multi-State Proactive Transport Protocol for Satellite based Networks

This paper attempts to establish the fact that Multi State Network Classification is essential for performance enhancement of Transport protocols over Satellite based Networks. A model to classify Multi State network condition taking into consideration both congestion and channel error is evolved. In order to arrive at such a model an analysis of the impact of congestion and channel error on RTT values has been carried out using ns2. The analysis results are also reported in the paper. The inference drawn from this analysis is used to develop a novel statistical RTT based model for multi state network classification. An Adaptive Multi State Proactive Transport Protocol consisting of Proactive Slow Start, State based Error Recovery, Timeout Action and Proactive Reduction is proposed which uses the multi state network state classification model. This paper also confirms through detail simulation and analysis that a prior knowledge about the overall characteristics of the network helps in enhancing the performance of the protocol over satellite channel which is significantly affected due to channel noise and congestion. The necessary augmentation of ns2 simulator is done for simulating the multi state network classification logic. This simulation has been used in detail evaluation of the protocol under varied levels of congestion and channel noise. The performance enhancement of this protocol with reference to established protocols namely TCP SACK and Vegas has been discussed. The results as discussed in this paper clearly reveal that the proposed protocol always outperforms its peers and show a significant improvement in very high error conditions as envisaged in the design of the protocol.

Novel Dual Stage Membrane Bioreactor for the Continuous Remediation of Electroplating Wastewater

In this study, the designed dual stage membrane bioreactor (MBR) system was conceptualized for the treatment of cyanide and heavy metals in electroplating wastewater. The design consisted of a primary treatment stage to reduce the impact of fluctuations and the secondary treatment stage to remove the residual cyanide and heavy metal contaminants in the wastewater under alkaline pH conditions. The primary treatment stage contained hydrolyzed Citrus sinensis (C. sinensis) pomace and the secondary treatment stage contained active Aspergillus awamori (A. awamori) biomass, supplemented solely with C. sinensis pomace extract from the hydrolysis process. An average of 76.37%, 95.37%, 93.26 and 94.76% and 99.55%, 99.91%, 99.92% and 99.92% degradation efficiency for total cyanide (T-CN), including the sorption of nickel (Ni), zinc (Zn) and copper (Cu) were observed after the first and second treatment stages, respectively. Furthermore, cyanide conversion by-products degradation was 99.81% and 99.75 for both formate (CHOO-) and ammonium (NH4 +) after the second treatment stage. After the first, second and third regeneration cycles of the C. sinensis pomace in the first treatment stage, Ni, Zn and Cu removal achieved was 99.13%, 99.12% and 99.04% (first regeneration cycle), 98.94%, 98.92% and 98.41% (second regeneration cycle) and 98.46 %, 98.44% and 97.91% (third regeneration cycle), respectively. There was relatively insignificant standard deviation detected in all the measured parameters in the system which indicated reproducibility of the remediation efficiency in this continuous system.

Research on Transformer Condition-based Maintenance System using the Method of Fuzzy Comprehensive Evaluation

This study adopted previous fault patterns, results of detection analysis, historical records and data, and experts- experiences to establish fuzzy principles and estimate the failure probability index of components of a power transformer. Considering that actual parameters and limiting conditions of parameters may differ, this study used the standard data of IEC, IEEE, and CIGRE as condition parameters. According to the characteristics of each condition parameter, relative degradation was introduced to reflect the degree of influence of the factors on the transformer condition. The method of fuzzy mathematics was adopted to determine the subordinate function of the transformer condition. The calculation used the Matlab Fuzzy Tool Box to select the condition parameters of coil winding, iron core, bushing, OLTC, insulating oil and other auxiliary components and factors (e.g., load records, performance history, and maintenance records) of the transformer to establish the fuzzy principles. Examples were presented to support the rationality and effectiveness of the evaluation method of power transformer performance conditions, as based on fuzzy comprehensive evaluation.