Root System Production and Aboveground Biomass Production of Chosen Cover Crops

The most planted cover crops in the Czech Republic are mustard (Sinapis alba) and phacelia (Phacelia tanacetifolia Benth.). A field trial was executed to evaluate root system size (RSS) in eight varieties of mustard and five varieties of phacelia on two locations, in three BBCH phases and in two years. The relationship between RSS and aboveground biomass was inquired. The root system was assessed by measuring its electric capacity. Aboveground mass and root samples to be evaluated by means of a digital image analysis were recovered in the BBCH phase 70. The yield of aboveground biomass of mustard was always statistically significantly higher than that of phacelia. Mustard showed a statistically significant negative correlation between root length density (RLD) within 10 cm and aboveground biomass weight (r = - 0.46*). Phacelia featured a statistically significant correlation between aboveground biomass production and nitrate nitrogen content in soil (r=0.782**).

Electrical Characteristics of Biomodified Electrodes using Nonfaradaic Electrochemical Impedance Spectroscopy

We demonstrate a nonfaradaic electrochemical impedance spectroscopy measurement of biochemically modified gold plated electrodes using a two-electrode system. The absence of any redox indicator in the impedance measurements provide more precise and accurate characterization of the measured bioanalyte at molecular resolution. An equivalent electrical circuit of the electrodeelectrolyte interface was deduced from the observed impedance data of saline solution at low and high concentrations. The detection of biomolecular interactions was fundamentally correlated to electrical double-layer variation at modified interface. The investigations were done using 20mer deoxyribonucleic acid (DNA) strands without any label. Surface modification was performed by creating mixed monolayer of the thiol-modified single-stranded DNA and a spacer thiol (mercaptohexanol) by a two-step self-assembly method. The results clearly distinguish between the noncomplementary and complementary hybridization of DNA, at low frequency region below several hundreds Hertz.

An Adversarial Construction of Instability Bounds in LIS Networks

In this work, we study the impact of dynamically changing link slowdowns on the stability properties of packetswitched networks under the Adversarial Queueing Theory framework. Especially, we consider the Adversarial, Quasi-Static Slowdown Queueing Theory model, where each link slowdown may take on values in the two-valued set of integers {1, D} with D > 1 which remain fixed for a long time, under a (w, ¤ü)-adversary. In this framework, we present an innovative systematic construction for the estimation of adversarial injection rate lower bounds, which, if exceeded, cause instability in networks that use the LIS (Longest-in- System) protocol for contention-resolution. In addition, we show that a network that uses the LIS protocol for contention-resolution may result in dropping its instability bound at injection rates ¤ü > 0 when the network size and the high slowdown D take large values. This is the best ever known instability lower bound for LIS networks.

Design for Reliability and Manufacturing Yield (Study and Modeling of Defects in Integrated Circuits for their Reliability Analysis)

In this document, we have proposed a robust conceptual strategy, in order to improve the robustness against the manufacturing defects and thus the reliability of logic CMOS circuits. However, in order to enable the use of future CMOS technology nodes this strategy combines various types of design: DFR (Design for Reliability), techniques of tolerance: hardware redundancy TMR (Triple Modular Redundancy) for hard error tolerance, the DFT (Design for Testability. The Results on largest ISCAS and ITC benchmark circuits show that our approach improves considerably the reliability, by reducing the key factors, the area costs and fault tolerance probability.

Maximum Common Substructure Extraction in RNA Secondary Structures Using Clique Detection Approach

The similarity comparison of RNA secondary structures is important in studying the functions of RNAs. In recent years, most existing tools represent the secondary structures by tree-based presentation and calculate the similarity by tree alignment distance. Different to previous approaches, we propose a new method based on maximum clique detection algorithm to extract the maximum common structural elements in compared RNA secondary structures. A new graph-based similarity measurement and maximum common subgraph detection procedures for comparing purely RNA secondary structures is introduced. Given two RNA secondary structures, the proposed algorithm consists of a process to determine the score of the structural similarity, followed by comparing vertices labelling, the labelled edges and the exact degree of each vertex. The proposed algorithm also consists of a process to extract the common structural elements between compared secondary structures based on a proposed maximum clique detection of the problem. This graph-based model also can work with NC-IUB code to perform the pattern-based searching. Therefore, it can be used to identify functional RNA motifs from database or to extract common substructures between complex RNA secondary structures. We have proved the performance of this proposed algorithm by experimental results. It provides a new idea of comparing RNA secondary structures. This tool is helpful to those who are interested in structural bioinformatics.

Performance Comparison of Real Time EDAC Systems for Applications On-Board Small Satellites

On-board Error Detection and Correction (EDAC) devices aim to secure data transmitted between the central processing unit (CPU) of a satellite onboard computer and its local memory. This paper presents a comparison of the performance of four low complexity EDAC techniques for application in Random Access Memories (RAMs) on-board small satellites. The performance of a newly proposed EDAC architecture is measured and compared with three different EDAC strategies, using the same FPGA technology. A statistical analysis of single-event upset (SEU) and multiple-bit upset (MBU) activity in commercial memories onboard Alsat-1 is given for a period of 8 years

Study of Unsteady Swirling Flow in a Hydrodynamic Vortex Chamber

The paper reports on the results of experimental and numerical study of nonstationary swirling flow in an isothermal model of vortex burner. It has been identified that main source of the instability is related to a precessing vortex core (PVC) phenomenon. The PVC induced flow pulsation characteristics such as precession frequency and its variation as a function of flowrate and swirl number have been explored making use of acoustic probes. Additionally pressure transducers were used to measure the pressure drops on the working chamber and across the vortex flow. The experiments have been included also the mean velocity measurements making use of a laser-Doppler anemometry. The features of instantaneous flowfield generated by the PVC were analyzed employing a commercial CFD code (Star-CCM+) based on Detached Eddy Simulation (DES) approach. Validity of the numerical code has been checked by comparison calculated flowfield data with the obtained experimental results. It has been confirmed particularly that the CFD code applied correctly reproduces the flow features.

Solitary Wave Solutions for Burgers-Fisher type Equations with Variable Coefficients

We have solved the Burgers-Fisher (BF) type equations, with time-dependent coefficients of convection and reaction terms, by using the auxiliary equation method. A class of solitary wave solutions are obtained, and some of which are derived for the first time. We have studied the effect of variable coefficients on physical parameters (amplitude and velocity) of solitary wave solutions. In some cases, the BF equations could be solved for arbitrary timedependent coefficient of convection term.

NEAR: Visualizing Information Relations in Multimedia Repository A•VI•RE

This paper describes the NEAR (Navigating Exhibitions, Annotations and Resources) panel, a novel interactive visualization technique designed to help people navigate and interpret groups of resources, exhibitions and annotations by revealing hidden relations such as similarities and references. NEAR is implemented on A•VI•RE, an extended online information repository. A•VI•RE supports a semi-structured collection of exhibitions containing various resources and annotations. Users are encouraged to contribute, share, annotate and interpret resources in the system by building their own exhibitions and annotations. However, it is hard to navigate smoothly and efficiently in A•VI•RE because of its high capacity and complexity. We present a visual panel that implements new navigation and communication approaches that support discovery of implied relations. By quickly scanning and interacting with NEAR, users can see not only implied relations but also potential connections among different data elements. NEAR was tested by several users in the A•VI•RE system and shown to be a supportive navigation tool. In the paper, we further analyze the design, report the evaluation and consider its usage in other applications.

Ranking and Unranking Algorithms for k-ary Trees in Gray Code Order

In this paper, we present two new ranking and unranking algorithms for k-ary trees represented by x-sequences in Gray code order. These algorithms are based on a gray code generation algorithm developed by Ahrabian et al.. In mentioned paper, a recursive backtracking generation algorithm for x-sequences corresponding to k-ary trees in Gray code was presented. This generation algorithm is based on Vajnovszki-s algorithm for generating binary trees in Gray code ordering. Up to our knowledge no ranking and unranking algorithms were given for x-sequences in this ordering. we present ranking and unranking algorithms with O(kn2) time complexity for x-sequences in this Gray code ordering

New Analysis Methods on Strict Avalanche Criterion of S-Boxes

S-boxes (Substitution boxes) are keystones of modern symmetric cryptosystems (block ciphers, as well as stream ciphers). S-boxes bring nonlinearity to cryptosystems and strengthen their cryptographic security. They are used for confusion in data security An S-box satisfies the strict avalanche criterion (SAC), if and only if for any single input bit of the S-box, the inversion of it changes each output bit with probability one half. If a function (cryptographic transformation) is complete, then each output bit depends on all of the input bits. Thus, if it were possible to find the simplest Boolean expression for each output bit in terms of the input bits, each of these expressions would have to contain all of the input bits if the function is complete. From some important properties of S-box, the most interesting property SAC (Strict Avalanche Criterion) is presented and to analyze this property three analysis methods are proposed.

Effect of One-Handed Pushing and Puling Strength at Different Handle Heights in Vertical Direction

The purpose of this study was to measure the maximal isometric strength and to investigate the effects of different handleheights and elbow angles with respect to Mid. sagittal plane on the pushing and pulling strength in vertical direction. Eight male subjects performed a series of static strength measurement for each subject. The highest isometric strength was found in pulling at shoulder height (S.H.) (Mean = 60.29 lb., SD = 16.78 lb.) and the lowest isometric strength was found also in pulling at elbow height (E.H.) (Mean = 33.06 lb., SD = 6.56 lb.). Although the isometric strengths were higher at S.H than at E.H. for both activities, the maximal isometric strengths were compared statistically. ANOVA was performed. The results of the experiment revealed that there was a significant different between handle heights. However, there were no significant different between angles and activities, also no correlation between grip strength and activities.

An Artificial Emotion Model For Visualizing Emotion of Characters

It is hard to express emotion through only speech when we watch a character in a movie or a play because we cannot estimate the size, kind, and quantity of emotion. So this paper proposes an artificial emotion model for visualizing current emotion with color and location in emotion model. The artificial emotion model is designed considering causality of generated emotion, difference of personality, difference of continual emotional stimulus, and co-relation of various emotions. This paper supposed the Emotion Field for visualizing current emotion with location, and current emotion is expressed by location and color in the Emotion Field. For visualizing changes within current emotion, the artificial emotion model is adjusted to characters in Hamlet.

A Comparative Study of Various Tone Mapping Methods

In the recent years, high dynamic range imaging has gain popularity with the advancement in digital photography. In this contribution we present a subjective evaluation of various tone production and tone mapping techniques by a number of participants. Firstly, standard HDR images were used and the participants were asked to rate them based on a given rating scheme. After that, the participant was asked to rate HDR image generated using linear and nonlinear combination approach of multiple exposure images. The experimental results showed that linearly generated HDR images have better visualization than the nonlinear combined ones. In addition, Reinhard et al. and the exponential tone mapping operators have shown better results compared to logarithmic and the Garrett et al. tone mapping operators.

A Comparative Study of SVM Classifiers and Artificial Neural Networks Application for Rolling Element Bearing Fault Diagnosis using Wavelet Transform Preprocessing

Effectiveness of Artificial Neural Networks (ANN) and Support Vector Machines (SVM) classifiers for fault diagnosis of rolling element bearings are presented in this paper. The characteristic features of vibration signals of rotating driveline that was run in its normal condition and with faults introduced were used as input to ANN and SVM classifiers. Simple statistical features such as standard deviation, skewness, kurtosis etc. of the time-domain vibration signal segments along with peaks of the signal and peak of power spectral density (PSD) are used as features to input the ANN and SVM classifier. The effect of preprocessing of the vibration signal by Discreet Wavelet Transform (DWT) prior to feature extraction is also studied. It is shown from the experimental results that the performance of SVM classifier in identification of bearing condition is better then ANN and pre-processing of vibration signal by DWT enhances the effectiveness of both ANN and SVM classifier

Mycoflora of Activated Sludge with MBRs in Berlin, Germany

Thirty six samples from each (aerobic and anoxic) activated sludge were collected from two wastewater treatment plants with MBRs in Berlin, Germany. The samples were prepared for count and definition of fungal isolates; these isolates were purified by conventional techniques and identified by microscopic examination. Sixty tow species belonging to 28 genera were isolated from activated sludge samples under aerobic conditions (28 genera and 58 species) and anoxic conditions (26 genera and 52 species). The obtained data show that, Aspergillus was found at 94.4% followed by Penicillium 61.1 %, Fusarium (61.1 %), Trichoderma (44.4 %) and Geotrichum candidum (41.6 %) species were the most prevalent in all activated sludge samples. The study confirmed that fungi can thrive in activated sludge and sporulation, but isolated in different numbers depending on the effect of aeration system. Some fungal species in our study are saprophytic, and other a pathogenic to plants and animals.

Building Trust of Mobile Users and their Adoption of M-Commerce

One challenging direction of mobile commerce (mcommerce) that is getting a great deal of attention globally is mobile financing. The smart-phone and PDA users all around the world are facing difficulties to become accustomed and trust in m-commerce. The main rationale can be the slow variation and lack of trust in mobile payment systems. Mobile payment systems that are in use need to be more effective and efficient. This paper proposes: the interface design is not the only factor affecting the m-commerce adoption and lack of trust; in fact it is the combined effect of interface usability and trustworthy mobile payment systems, because it-s the money that the user has to spend at the end of the day, which the user requires to get transferred securely. The purpose of this research is to identify the problems regarding the trust and adaption of m-commerce applications by mobile users and to provide the best possible solution with respect to human computer interaction (HCI) principles.

Well-Being in Adolescence: Fitting Measurement Model

Well-being has been given special emphasis in quality of life. It involves living a meaningful, life satisfaction, stability and happiness in life. Well-being also concerns the satisfaction of physical, psychological, social needs and demands of an individual. The purpose of this study was to validate three-factor measurement model of well-being using structural equation modeling (SEM). The conceptions of well-being measured such dimensions as physical, psychological and social well-being. This study was done based on a total sample of 650 adolescents from east-coast of peninsular Malaysia. The Well-Being Scales which was adapted from [1] was used in this study. The items were hypothesized a priori to have nonzero loadings on all dimensions in the model. The findings of the SEM demonstrated that it is a good fitting model which the proposed model fits the driving theory; (x2df = 1.268; GFI = .994; CFI = .998; TLI= .996; p = .255; RMSEA = .021). Composite reliability (CR) was .93 and average variance extracted (AVE) was 58%. The model in this study fits with the sample of data and well-being is important to bring sustainable development to the mainstream.

Modeling and Analysis of Process Parameters on Surface Roughness in EDM of AISI D2 Tool Steel by RSM Approach

In this research, Response Surface Methodology (RSM) is used to investigate the effect of four controllable input variables namely: discharge current, pulse duration, pulse off time and applied voltage Surface Roughness (SR) of on Electrical Discharge Machined surface. To study the proposed second-order polynomial model for SR, a Central Composite Design (CCD) is used to estimation the model coefficients of the four input factors, which are alleged to influence the SR in Electrical Discharge Machining (EDM) process. Experiments were conducted on AISI D2 tool steel with copper electrode. The response is modeled using RSM on experimental data. The significant coefficients are obtained by performing Analysis of Variance (ANOVA) at 5% level of significance. It is found that discharge current, pulse duration, and pulse off time and few of their interactions have significant effect on the SR. The model sufficiency is very satisfactory as the Coefficient of Determination (R2) is found to be 91.7% and adjusted R2-statistic (R2 adj ) 89.6%.

Extraction of Significant Phrases from Text

Prospective readers can quickly determine whether a document is relevant to their information need if the significant phrases (or keyphrases) in this document are provided. Although keyphrases are useful, not many documents have keyphrases assigned to them, and manually assigning keyphrases to existing documents is costly. Therefore, there is a need for automatic keyphrase extraction. This paper introduces a new domain independent keyphrase extraction algorithm. The algorithm approaches the problem of keyphrase extraction as a classification task, and uses a combination of statistical and computational linguistics techniques, a new set of attributes, and a new machine learning method to distinguish keyphrases from non-keyphrases. The experiments indicate that this algorithm performs better than other keyphrase extraction tools and that it significantly outperforms Microsoft Word 2000-s AutoSummarize feature. The domain independence of this algorithm has also been confirmed in our experiments.