Generation of Sets of Synthetic Classifiers for the Evaluation of Abstract-Level Combination Methods

This paper presents a new technique for generating sets of synthetic classifiers to evaluate abstract-level combination methods. The sets differ in terms of both recognition rates of the individual classifiers and degree of similarity. For this purpose, each abstract-level classifier is considered as a random variable producing one class label as the output for an input pattern. From the initial set of classifiers, new slightly different sets are generated by applying specific operators, which are defined at the purpose. Finally, the sets of synthetic classifiers have been used to estimate the performance of combination methods for abstract-level classifiers. The experimental results demonstrate the effectiveness of the proposed approach.

Applying GQM Approach towards Development of Criterion-Referenced Assessment Model for OO Programming Courses

The most influential programming paradigm today is object oriented (OO) programming and it is widely used in education and industry. Recognizing the importance of equipping students with OO knowledge and skills, it is not surprising that most Computer Science degree programs offer OO-related courses. How do we assess whether the students have acquired the right objectoriented skills after they have completed their OO courses? What are object oriented skills? Currently none of the current assessment techniques would be able to provide this answer. Traditional forms of OO programming assessment provide a ways for assigning numerical scores to determine letter grades. But this rarely reveals information about how students actually understand OO concept. It appears reasonable that a better understanding of how to define and assess OO skills is needed by developing a criterion referenced model. It is even critical in the context of Malaysia where there is currently a growing concern over the level of competency of Malaysian IT graduates in object oriented programming. This paper discussed the approach used to develop the criterion-referenced assessment model. The model can serve as a guideline when conducting OO programming assessment as mentioned. The proposed model is derived by using Goal Questions Metrics methodology, which helps formulate the metrics of interest. It concluded with a few suggestions for further study.

Asymptotic Stability of Input-saturated System with Linear-growth-bound Disturbances via Variable Structure Control: An LMI Approach

Variable Structure Control (VSC) is one of the most useful tools handling the practical system with uncertainties and disturbances. Up to now, unfortunately, not enough studies on the input-saturated system with linear-growth-bound disturbances via VSC have been presented. Therefore, this paper proposes an asymp¬totic stability condition for the system via VSC. The designed VSC controller consists of two control parts. The linear control part plays a role in stabilizing the system, and simultaneously, the nonlinear control part in rejecting the linear-growth-bound disturbances perfectly. All conditions derived in this paper are expressed with Linear Matrices Inequalities (LMIs), which can be easily solved with an LMI toolbox in MATLAB.

Development of the Measurement Apparatus for the Effective Thermal Conductivity of Core Material

A measurement apparatus is designed and fabricated to measure the effective thermal conductivity (keff) of a VIP (vacuum insulation panel) core specimen under various vacuum states and external loads. The apparatus consists of part for measuring keff, and parts for controlling external load and vacuum condition. Uncertainty of the apparatus is validated by measuring the standard reference material and comparing with commercial devices with VIP samples. Assessed uncertainty is maximum 2.5 % in case of the standard reference material, 10 % in case of VIP samples. Using the apparatus, keff of glass paper under various vacuum levels is examined.

Immune Responce in Mice Immunized with Live Cold-Adapted Influenza Vaccine in Combination with Chitosan-Based Adjuvants

An influence of intranasal combined injection of live cold-adapted influenza vaccine with chitosan derivatives as adjuvants on the subpopulation structure of mononuclear leukocytes of mouse spleen which reflects the orientation of the immune response was studied. It is found that the inclusion of chitosan preparations promotes activation of cellular-level of immune response.

Web Traffic Mining using Neural Networks

With the explosive growth of data available on the Internet, personalization of this information space become a necessity. At present time with the rapid increasing popularity of the WWW, Websites are playing a crucial role to convey knowledge and information to the end users. Discovering hidden and meaningful information about Web users usage patterns is critical to determine effective marketing strategies to optimize the Web server usage for accommodating future growth. The task of mining useful information becomes more challenging when the Web traffic volume is enormous and keeps on growing. In this paper, we propose a intelligent model to discover and analyze useful knowledge from the available Web log data.

A Black-box Approach for Response Quality Evaluation of Conversational Agent Systems

The evaluation of conversational agents or chatterbots question answering systems is a major research area that needs much attention. Before the rise of domain-oriented conversational agents based on natural language understanding and reasoning, evaluation is never a problem as information retrieval-based metrics are readily available for use. However, when chatterbots began to become more domain specific, evaluation becomes a real issue. This is especially true when understanding and reasoning is required to cater for a wider variety of questions and at the same time to achieve high quality responses. This paper discusses the inappropriateness of the existing measures for response quality evaluation and the call for new standard measures and related considerations are brought forward. As a short-term solution for evaluating response quality of conversational agents, and to demonstrate the challenges in evaluating systems of different nature, this research proposes a blackbox approach using observation, classification scheme and a scoring mechanism to assess and rank three example systems, AnswerBus, START and AINI.

Agrowaste: Phytosterol from Durian Seed

Presence of phytosterol compound in Durian seed (Durio zibethinus) or known as King of fruits has been discovered from screening work using reagent test. Further analysis work has been carried out using mass spectrometer in order to support the priliminary finding. Isolation and purification of the major phytosterol has been carried out using an open column chromatography. The separation was monitored using thin layer chromatography (TLC). Major isolated compounds and purified phytosterol were identified using mass spectrometer and nuclear magnetic resonance (NMR). This novel finding could promote utilization of durian seeds as a functional ingredient in food products through production of standardized extract based on phytosterol content.

Single Image Defogging Method Using Variational Approach for Edge-Preserving Regularization

In this paper, we propose the variational approach to solve single image defogging problem. In the inference process of the atmospheric veil, we defined new functional for atmospheric veil that satisfy edge-preserving regularization property. By using the fundamental lemma of calculus of variations, we derive the Euler-Lagrange equation foratmospheric veil that can find the maxima of a given functional. This equation can be solved by using a gradient decent method and time parameter. Then, we can have obtained the estimated atmospheric veil, and then have conducted the image restoration by using inferred atmospheric veil. Finally we have improved the contrast of restoration image by various histogram equalization methods. The experimental results show that the proposed method achieves rather good defogging results.

Effect of Zeolite on the Decomposition Resistance of Organic Matter in Tropical Soils under Global Warming

Global temperature had increased by about 0.5oC over the past century, increasing temperature leads to a loss or a decrease of soil organic matter (SOM). Whereas soil organic matter in many tropical soils is less stable than that of temperate soils, and it will be easily affected by climate change. Therefore, conservation of soil organic matter is urgent issue nowadays. This paper presents the effect of different doses (5%, 15%) of Ca-type zeolite in conjunction with organic manure, applied to soil samples from Philippines, Paraguay and Japan, on the decomposition resistance of soil organic matter under high temperature. Results showed that a remain or slightly increase the C/N ratio of soil. There are an increase in percent of humic acid (PQ) that extracted with Na4P2O7. A decrease of percent of free humus (fH) after incubation was determined. A larger the relative color intensity (RF) value and a lower the color coefficient (6logK) value following increasing zeolite rates leading to a higher degrees of humification. The increase in the aromatic condensation of humic acid (HA) after incubation, as indicates by the decrease of H/C and O/C ratios of HA. This finding indicates that the use of zeolite could be beneficial with respect to SOM conservation under global warming condition.

A Strategic Evaluation Approach for Defining the Maturity of Manufacturing Technologies

Due to dynamic evolution, the ability of a manufacturing technology to produce a special product is changing. Therefore, it is essential to monitor the established techniques and processes to detect whether a company-s production will fit future circumstances. Concerning the manufacturing technology planning process, companies must decide when to change to a new technology for maintaining and increasing competitive advantages. In this context, the maturity assessment of the focused technologies is crucial. This article presents an approach for defining the maturity of a manufacturing technology from a strategic point of view. The concept is based on the approach of technology readiness level (TRL) according to NASA (National Aeronautics and Space Administration), but also includes dynamic changes. Therefore, the model takes into account the concept of the technology life cycle. Furthermore, it enables a company to estimate the ideal date for implementation of a new manufacturing technology.

Multi-Agent Systems for Intelligent Clustering

Intelligent systems are required in order to quickly and accurately analyze enormous quantities of data in the Internet environment. In intelligent systems, information extracting processes can be divided into supervised learning and unsupervised learning. This paper investigates intelligent clustering by unsupervised learning. Intelligent clustering is the clustering system which determines the clustering model for data analysis and evaluates results by itself. This system can make a clustering model more rapidly, objectively and accurately than an analyzer. The methodology for the automatic clustering intelligent system is a multi-agent system that comprises a clustering agent and a cluster performance evaluation agent. An agent exchanges information about clusters with another agent and the system determines the optimal cluster number through this information. Experiments using data sets in the UCI Machine Repository are performed in order to prove the validity of the system.

Air flow and Heat Transfer Modeling of an Axial Flux Permanent Magnet Generator

Axial Flux Permanent Magnet (AFPM) Machines require effective cooling due to their high power density. The detrimental effects of overheating such as degradation of the insulation materials, magnets demagnetization, and increase of Joule losses are well known. This paper describes the CFD simulations performed on a test rig model of an air cooled Axial Flux Permanent Magnet (AFPM) generator built at Durham University to identify the temperatures and heat transfer coefficient on the stator. The Reynolds Averaged Navier-Stokes and the Energy equations are solved and the flow pattern and heat transfer developing inside the machine are described. The Nusselt number on the stator surfaces has been found. The dependency of the heat transfer on the flow field is described temperature field obtained. Tests on an experimental are undergoing in order to validate the CFD results.

Global and Local Structure of Supported Pd Catalysts

The supported Pd catalysts were analyzed by X-ray diffraction and X-ray absorption spectroscopy in order to determine their global and local structure. The average particle size of the supported Pd catalysts was determined by X-ray diffraction method. One of the main purposes of the present contribution is to focus on understanding the specific role of the Pd particle size determined by X-ray diffraction and that of the support oxide. Based on X-ray absorption fine structure spectroscopy analysis we consider that the whole local structure of the investigated samples are distorted concerning the atomic number but the distances between atoms are almost the same as for standard Pd sample. Due to the strong modifications of the Pd cluster local structure, the metal-support interface may influence the electronic properties of metal clusters and thus their reactivity for absorption of the reactant molecules.

Observer Based Control of a Class of Nonlinear Fractional Order Systems using LMI

Design of an observer based controller for a class of fractional order systems has been done. Fractional order mathematics is used to express the system and the proposed observer. Fractional order Lyapunov theorem is used to derive the closed-loop asymptotic stability. The gains of the observer and observer based controller are derived systematically using the linear matrix inequality approach. Finally, the simulation results demonstrate validity and effectiveness of the proposed observer based controller.

Twin-Screw Extruder and Effective Parameters on the HDPE Extrusion Process

In the process of polyethylene extrusion polymer material similar to powder or granule is under compression, melting and transmission operation and on base of special form, extrudate has been produced. Twin-screw extruders are applicable in industries because of their high capacity. The powder mixing with chemical additives and melting with thermal and mechanical energy in three zones (feed, compression and metering zone) and because of gear pump and screw's pressure, converting to final product in latest plate. Extruders with twin-screw and short distance between screws are better than other types because of their high capacity and good thermal and mechanical stress. In this paper, process of polyethylene extrusion and various tapes of extruders are studied. It is necessary to have an exact control on process to producing high quality products with safe operation and optimum energy consumption. The granule size is depending on granulator motor speed. Results show at constant feed rate a decrease in granule size was found whit Increase in motor speed. Relationships between HDPE feed rate and speed of granulator motor, main motor and gear pump are calculated following as: x = HDPE feed flow rate, yM = Main motor speed yM = (-3.6076e-3) x^4+ (0.24597) x^3+ (-5.49003) x^2+ (64.22092) x+61.66786 (1) x = HDPE feed flow rate, yG = Gear pump speed yG = (-2.4996e-3) x^4+ (0.18018) x^3+ (-4.22794) x^2+ (48.45536) x+18.78880 (2) x = HDPE feed flow rate, y = Granulator motor speed 10th Degree Polynomial Fit: y = a+bx+cx^2+dx^3... (3) a = 1.2751, b = 282.4655, c = -165.2098, d = 48.3106, e = -8.18715, f = 0.84997 g = -0.056094, h = 0.002358, i = -6.11816e-5 j = 8.919726e-7, k = -5.59050e-9

Extending Global Full Orthogonalization method for Solving the Matrix Equation AXB=F

In the present work, we propose a new method for solving the matrix equation AXB=F . The new method can be considered as a generalized form of the well-known global full orthogonalization method (Gl-FOM) for solving multiple linear systems. Hence, the method will be called extended Gl-FOM (EGl- FOM). For implementing EGl-FOM, generalized forms of block Krylov subspace and global Arnoldi process are presented. Finally, some numerical experiments are given to illustrate the efficiency of our new method.

Interference Reduction Technique in Multistage Multiuser Detector for DS-CDMA System

This paper presents the results related to the interference reduction technique in multistage multiuser detector for asynchronous DS-CDMA system. To meet the real-time requirements for asynchronous multiuser detection, a bit streaming, cascade architecture is used. An asynchronous multiuser detection involves block-based computations and matrix inversions. The paper covers iterative-based suboptimal schemes that have been studied to decrease the computational complexity, eliminate the need for matrix inversions, decreases the execution time, reduces the memory requirements and uses joint estimation and detection process that gives better performance than the independent parameter estimation method. The stages of the iteration use cascaded and bits processed in a streaming fashion. The simulation has been carried out for asynchronous DS-CDMA system by varying one parameter, i.e., number of users. The simulation result exhibits that system gives optimum bit error rate (BER) at 3rd stage for 15-users.

Automatic Generation Control of Multi-Area Electric Energy Systems Using Modified GA

A modified Genetic Algorithm (GA) based optimal selection of parameters for Automatic Generation Control (AGC) of multi-area electric energy systems is proposed in this paper. Simulations on multi-area reheat thermal system with and without consideration of nonlinearity like governor dead band followed by 1% step load perturbation is performed to exemplify the optimum parameter search. In this proposed method, a modified Genetic Algorithm is proposed where one point crossover with modification is employed. Positional dependency in respect of crossing site helps to maintain diversity of search point as well as exploitation of already known optimum value. This makes a trade-off between exploration and exploitation of search space to find global optimum in less number of generations. The proposed GA along with decomposition technique as developed has been used to obtain the optimum megawatt frequency control of multi-area electric energy systems. Time-domain simulations are conducted with trapezoidal integration along with decomposition technique. The superiority of the proposed method over existing one is verified from simulations and comparisons.

An Effective Algorithm for Minimum Weighted Vertex Cover Problem

The Minimum Weighted Vertex Cover (MWVC) problem is a classic graph optimization NP - complete problem. Given an undirected graph G = (V, E) and weighting function defined on the vertex set, the minimum weighted vertex cover problem is to find a vertex set S V whose total weight is minimum subject to every edge of G has at least one end point in S. In this paper an effective algorithm, called Support Ratio Algorithm (SRA), is designed to find the minimum weighted vertex cover of a graph. Computational experiments are designed and conducted to study the performance of our proposed algorithm. Extensive simulation results show that the SRA can yield better solutions than other existing algorithms found in the literature for solving the minimum vertex cover problem.