On Discretization of Second-order Derivatives in Smoothed Particle Hydrodynamics

Discretization of spatial derivatives is an important issue in meshfree methods especially when the derivative terms contain non-linear coefficients. In this paper, various methods used for discretization of second-order spatial derivatives are investigated in the context of Smoothed Particle Hydrodynamics. Three popular forms (i.e. "double summation", "second-order kernel derivation", and "difference scheme") are studied using one-dimensional unsteady heat conduction equation. To assess these schemes, transient response to a step function initial condition is considered. Due to parabolic nature of the heat equation, one can expect smooth and monotone solutions. It is shown, however in this paper, that regardless of the type of kernel function used and the size of smoothing radius, the double summation discretization form leads to non-physical oscillations which persist in the solution. Also, results show that when a second-order kernel derivative is used, a high-order kernel function shall be employed in such a way that the distance of inflection point from origin in the kernel function be less than the nearest particle distance. Otherwise, solutions may exhibit oscillations near discontinuities unlike the "difference scheme" which unconditionally produces monotone results.

Machining Parameters Optimization of Developed Yttria Stabilized Zirconia Toughened Alumina Ceramic Inserts While Machining AISI 4340 Steel

An attempt has been made to investigate the machinability of zirconia toughened alumina (ZTA) inserts while turning AISI 4340 steel. The insert was prepared by powder metallurgy process route and the machining experiments were performed based on Response Surface Methodology (RSM) design called Central Composite Design (CCD). The mathematical model of flank wear, cutting force and surface roughness have been developed using second order regression analysis. The adequacy of model has been carried out based on Analysis of variance (ANOVA) techniques. It can be concluded that cutting speed and feed rate are the two most influential factor for flank wear and cutting force prediction. For surface roughness determination, the cutting speed & depth of cut both have significant contribution. Key parameters effect on each response has also been presented in graphical contours for choosing the operating parameter preciously. 83% desirability level has been achieved using this optimized condition.

PoPCoRN: A Power-Aware Periodic Surveillance Scheme in Convex Region using Wireless Mobile Sensor Networks

In this paper, the periodic surveillance scheme has been proposed for any convex region using mobile wireless sensor nodes. A sensor network typically consists of fixed number of sensor nodes which report the measurements of sensed data such as temperature, pressure, humidity, etc., of its immediate proximity (the area within its sensing range). For the purpose of sensing an area of interest, there are adequate number of fixed sensor nodes required to cover the entire region of interest. It implies that the number of fixed sensor nodes required to cover a given area will depend on the sensing range of the sensor as well as deployment strategies employed. It is assumed that the sensors to be mobile within the region of surveillance, can be mounted on moving bodies like robots or vehicle. Therefore, in our scheme, the surveillance time period determines the number of sensor nodes required to be deployed in the region of interest. The proposed scheme comprises of three algorithms namely: Hexagonalization, Clustering, and Scheduling, The first algorithm partitions the coverage area into fixed sized hexagons that approximate the sensing range (cell) of individual sensor node. The clustering algorithm groups the cells into clusters, each of which will be covered by a single sensor node. The later determines a schedule for each sensor to serve its respective cluster. Each sensor node traverses all the cells belonging to the cluster assigned to it by oscillating between the first and the last cell for the duration of its life time. Simulation results show that our scheme provides full coverage within a given period of time using few sensors with minimum movement, less power consumption, and relatively less infrastructure cost.

Network Anomaly Detection using Soft Computing

One main drawback of intrusion detection system is the inability of detecting new attacks which do not have known signatures. In this paper we discuss an intrusion detection method that proposes independent component analysis (ICA) based feature selection heuristics and using rough fuzzy for clustering data. ICA is to separate these independent components (ICs) from the monitored variables. Rough set has to decrease the amount of data and get rid of redundancy and Fuzzy methods allow objects to belong to several clusters simultaneously, with different degrees of membership. Our approach allows us to recognize not only known attacks but also to detect activity that may be the result of a new, unknown attack. The experimental results on Knowledge Discovery and Data Mining- (KDDCup 1999) dataset.

Mining Sequential Patterns Using I-PrefixSpan

In this paper, we propose an improvement of pattern growth-based PrefixSpan algorithm, called I-PrefixSpan. The general idea of I-PrefixSpan is to use sufficient data structure for Seq-Tree framework and separator database to reduce the execution time and memory usage. Thus, with I-PrefixSpan there is no in-memory database stored after index set is constructed. The experimental result shows that using Java 2, this method improves the speed of PrefixSpan up to almost two orders of magnitude as well as the memory usage to more than one order of magnitude.

Analysis of the Elastic Scattering of 12C on 11B at Energy near Coulomb Barrier Using Different Optical Potential Codes

the aim of that work is to study the proton transfer phenomenon which takes place in the elastic scattering of 12C on 11B at energies near the coulomb barrier. This reaction was studied at four different energies 16, 18, 22, 24 MeV. The experimental data of the angular distribution at these energies were compared to the calculation prediction using the optical potential codes such as ECIS88 and SPIVAL. For the raising in the cross section at backward angles due to the transfer process we could use Distorted Wave Born Approximation (DWUCK5). Our analysis showed that SPIVAL code with l-dependent imaginary potential could be used effectively.

A Study on Removal Characteristics of (Mn2+) from Aqueous Solution by CNT

It is important to remove manganese from water because of its effects on human and the environment. Human activities are one of the biggest contributors for excessive manganese concentration in the environment. The proposed method to remove manganese in aqueous solution by using adsorption as in carbon nanotubes (CNT) at different parameters: The parameters are CNT dosage, pH, agitation speed and contact time. Different pHs are pH 6.0, pH 6.5, pH 7.0, pH 7.5 and pH 8.0, CNT dosages are 5mg, 6.25mg, 7.5mg, 8.75mg or 10mg, contact time are 10 min, 32.5 min, 55 min, 87.5 min and 120 min while the agitation speeds are 100rpm, 150rpm, 200rpm, 250rpm and 300rpm. The parameters chosen for experiments are based on experimental design done by using Central Composite Design, Design Expert 6.0 with 4 parameters, 5 levels and 2 replications. Based on the results, condition set at pH 7.0, agitation speed of 300 rpm, 7.5mg and contact time 55 minutes gives the highest removal with 75.5%. From ANOVA analysis in Design Expert 6.0, the residual concentration will be very much affected by pH and CNT dosage. Initial manganese concentration is 1.2mg/L while the lowest residual concentration achieved is 0.294mg/L, which almost satisfy DOE Malaysia Standard B requirement. Therefore, further experiments must be done to remove manganese from model water to the required standard (0.2 mg/L) with the initial concentration set to 0.294 mg/L.

Non-Parametric Histogram-Based Thresholding Methods for Weld Defect Detection in Radiography

In non destructive testing by radiography, a perfect knowledge of the weld defect shape is an essential step to appreciate the quality of the weld and make decision on its acceptability or rejection. Because of the complex nature of the considered images, and in order that the detected defect region represents the most accurately possible the real defect, the choice of thresholding methods must be done judiciously. In this paper, performance criteria are used to conduct a comparative study of four non parametric histogram thresholding methods for automatic extraction of weld defect in radiographic images.

Experimental Study of Specific Cross Beam Types Appropriate for Modular Bridges

Recently in the field of bridges that are newly built or repaired, fast construction is required more than ever. For these reasons, precast prefabricated bridge that enables rapid construction is actively discussed and studied today. In South Korea, it is called modular bridge. Cross beam is an integral component of modular bridge. It functions for load distribution, reduction of bending moment, resistance of horizontal strength on lateral upper structure. In this study, the structural characteristics of domestic and foreign cross beam types were compared. Based on this, alternative cross beam connection types suitable for modular bridge were selected. And bulb-T girder specimens were fabricated with each type of connection. The behavior of each specimen was analyzed under static loading, and cross beam connection type which is expected to be best suited to modular bridge proposed.

Simulation of Fluid Flow and Heat Transfer in the Inclined Enclosure

Mixed convection in two-dimensional shallow rectangular enclosure is considered. The top hot wall moves with constant velocity while the cold bottom wall has no motion. Simulations are performed for Richardson number ranging from Ri = 0.001 to 100 and for Reynolds number keeping fixed at Re = 408.21. Under these conditions cavity encompasses three regimes: dominating forced, mixed and free convection flow. The Prandtl number is set to 6 and the effects of cavity inclination on the flow and heat transfer are studied for different Richardson number. With increasing the inclination angle, interesting behavior of the flow and thermal fields are observed. The streamlines and isotherm plots and the variation of the Nusselt numbers on the hot wall are presented. The average Nusselt number is found to increase with cavity inclination for Ri ³ 1 . Also it is shown that the average Nusselt number changes mildly with the cavity inclination in the dominant forced convection regime but it increases considerably in the regime with dominant natural convection.

Diagnosing Dangerous Arrhythmia of Patients by Automatic Detecting of QRS Complexes in ECG

In this paper, an automatic detecting algorithm for QRS complex detecting was applied for analyzing ECG recordings and five criteria for dangerous arrhythmia diagnosing are applied for a protocol type of automatic arrhythmia diagnosing system. The automatic detecting algorithm applied in this paper detected the distribution of QRS complexes in ECG recordings and related information, such as heart rate and RR interval. In this investigation, twenty sampled ECG recordings of patients with different pathologic conditions were collected for off-line analysis. A combinative application of four digital filters for bettering ECG signals and promoting detecting rate for QRS complex was proposed as pre-processing. Both of hardware filters and digital filters were applied to eliminate different types of noises mixed with ECG recordings. Then, an automatic detecting algorithm of QRS complex was applied for verifying the distribution of QRS complex. Finally, the quantitative clinic criteria for diagnosing arrhythmia were programmed in a practical application for automatic arrhythmia diagnosing as a post-processor. The results of diagnoses by automatic dangerous arrhythmia diagnosing were compared with the results of off-line diagnoses by experienced clinic physicians. The results of comparison showed the application of automatic dangerous arrhythmia diagnosis performed a matching rate of 95% compared with an experienced physician-s diagnoses.

Differences in Goal Scoring and Passing Sequences between Winning and Losing Team in UEFA-EURO Championship 2012

The objective of current study is to investigate the differences of winning and losing teams in terms of goal scoring and passing sequences. Total of 31 matches from UEFA-EURO 2012 were analyzed and 5 matches were excluded from analysis due to matches end up drawn. There are two groups of variable used in the study which is; i. the goal scoring variable and: ii. passing sequences variable. Data were analyzed using Wilcoxon matched pair rank test with significant value set at p < 0.05. Current study found the timing of goal scored was significantly higher for winning team at 1st half (Z=-3.416, p=.001) and 2nd half (Z=-3.252, p=.001). The scoring frequency was also found to be increase as time progressed and the last 15 minutes of the game was the time interval the most goals scored. The indicators that were significantly differences between winning and losing team were the goal scored (Z=-4.578, p=.000), the head (Z=-2.500, p=.012), the right foot (Z=-3.788,p=.000), corner (Z=-.2.126,p=.033), open play (Z=-3.744,p=.000), inside the penalty box (Z=-4.174, p=.000) , attackers (Z=-2.976, p=.003) and also the midfielders (Z=-3.400, p=.001). Regarding the passing sequences, there are significance difference between both teams in short passing sequences (Z=-.4.141, p=.000). While for the long passing, there were no significance difference (Z=-.1.795, p=.073). The data gathered in present study can be used by the coaches to construct detailed training program based on their objectives.

Performance Comparison and Analysis of Table-Driven and On-Demand Routing Protocols for Mobile Ad-hoc Networks

Mobile ad hoc network is a collection of mobile nodes communicating through wireless channels without any existing network infrastructure or centralized administration. Because of the limited transmission range of wireless network interfaces, multiple "hops" may be needed to exchange data across the network. In order to facilitate communication within the network, a routing protocol is used to discover routes between nodes. The primary goal of such an ad hoc network routing protocol is correct and efficient route establishment between a pair of nodes so that messages may be delivered in a timely manner. Route construction should be done with a minimum of overhead and bandwidth consumption. This paper examines two routing protocols for mobile ad hoc networks– the Destination Sequenced Distance Vector (DSDV), the table- driven protocol and the Ad hoc On- Demand Distance Vector routing (AODV), an On –Demand protocol and evaluates both protocols based on packet delivery fraction, normalized routing load, average delay and throughput while varying number of nodes, speed and pause time.

Vibration Suppression of Timoshenko Beams with Embedded Piezoelectrics Using POF

This paper deals with the design of a periodic output feedback controller for a flexible beam structure modeled with Timoshenko beam theory, Finite Element Method, State space methods and embedded piezoelectrics concept. The first 3 modes are considered in modeling the beam. The main objective of this work is to control the vibrations of the beam when subjected to an external force. Shear piezoelectric sensors and actuators are embedded into the top and bottom layers of a flexible aluminum beam structure, thus making it intelligent and self-adaptive. The composite beam is divided into 5 finite elements and the control actuator is placed at finite element position 1, whereas the sensor is varied from position 2 to 5, i.e., from the nearby fixed end to the free end. 4 state space SISO models are thus developed. Periodic Output Feedback (POF) Controllers are designed for the 4 SISO models of the same plant to control the flexural vibrations. The effect of placing the sensor at different locations on the beam is observed and the performance of the controller is evaluated for vibration control. Conclusions are finally drawn.

No one Set of Parameter Values Can Simulate the Epidemics Due to SARS Occurring at Different Localities

A mathematical model for the transmission of SARS is developed. In addition to dividing the population into susceptible (high and low risk), exposed, infected, quarantined, diagnosed and recovered classes, we have included a class called untraced. The model simulates the Gompertz curves which are the best representation of the cumulative numbers of probable SARS cases in Hong Kong and Singapore. The values of the parameters in the model which produces the best fit of the observed data for each city are obtained by using a differential evolution algorithm. It is seen that the values for the parameters needed to simulate the observed daily behaviors of the two epidemics are different.

Investigation of Scour Depth at Bridge Piers using Bri-Stars Model in Iran

BRI-STARS (BRIdge Stream Tube model for Alluvial River Simulation) program was used to investigate the scour depth around bridge piers in some of the major river systems in Iran. Model calibration was performed by collecting different field data. Field data are cataloged on three categories, first group of bridges that their rivers bed are formed by fine material, second group of bridges that their rivers bed are formed by sand material, and finally bridges that their rivers bed are formed by gravel or cobble materials. Verification was performed with some field data in Fars Province. Results show that for wide piers, computed scour depth is more than measured one. In gravel bed streams, computed scour depth is greater than measured scour depth, the reason is due to formation of armor layer on bed of channel. Once this layer is eroded, the computed scour depth is close to the measured one.

Hydrothermal Behavior of G-S Magnetically Stabilized Beds Consisting of Magnetic and Non-Magnetic Admixtures

The hydrothermal behavior of a bed consisting of magnetic and shale oil particle admixtures under the effect of a transverse magnetic field is investigated. The phase diagram, bed void fraction are studied under wide range of the operating conditions i.e., gas velocity, magnetic field intensity and fraction of the magnetic particles. It is found that the range of the stabilized regime is reduced as the magnetic fraction decreases. In addition, the bed voidage at the onset of fluidization decreases as the magnetic fraction decreases. On the other hand, Nusselt number and consequently the heat transfer coefficient is found to increase as the magnetic fraction decreases. An empirical equation is investigated to relate the effect of the gas velocity, magnetic field intensity and fraction of the magnetic particles on the heat transfer behavior in the bed.

Effect of Medium Capacity on the Relationship between Chemical Heterogeneity and Linearly Adsorbed Solute Dispersion into Fixed Beds

The paper aims at investigating influence of medium capacity on linear adsorbed solute dispersion into chemically heterogeneous fixed beds. A discrete chemical heterogeneity distribution is considered in the one-dimensional advectivedispersive equation. The partial differential equation is solved using finite volumes method based on the Adam-Bashforth algorithm. Increased dispersion is estimated by comparing breakthrough curves second order moments and keeping identical hydrodynamic properties. As a result, dispersion increase due to chemical heterogeneity depends on the column size and surprisingly on the solid capacity. The more intense capacity is, the more important solute dispersion is. Medium length which is known to favour this effect vanishing according to the linear adsorption in fixed bed seems to create nonmonotonous variation of dispersion because of the heterogeneity. This nonmonotonous behaviour is also favoured by high capacities.

Fuzzy PID based PSS Design Using Genetic Algorithm

This paper presents PSS (Power system stabilizer) design based on optimal fuzzy PID (OFPID). OFPID based PSS design is considered for single-machine power systems. The main motivation for this design is to stabilize or to control low-frequency oscillation on power systems. Firstly, describing the linear PID control then to combine this PID control with fuzzy logic control mechanism. Finally, Fuzzy PID parameters (Kp. Kd, KI, Kupd, Kui) are tuned by Genetic Algorthm (GA) to reach optimal global stability. The effectiveness of the proposed PSS in increasing the damping of system electromechanical oscillation is demonstrated in a one-machine-infinite-bus system

Consumer Insolvency in the Czech Republic

The Czech Republic is a country whose economy has undergone a transformation since 1989. Since joining the EU it has been striving to reduce the differences in its economic standard and the quality of its institutional environment in comparison with developed countries. According to an assessment carried out by the World Bank, the Czech Republic was long classed as a country whose institutional development was seen as problematic. For many years one of the things it was rated most poorly on was its bankruptcy law. The new Insolvency Act, which is a modern law in terms of its treatment of bankruptcy, was first adopted in the Czech Republic in 2006. This law, together with other regulatory measures, offers debtridden Czech economic subjects legal instruments which are well established and in common practice in developed market economies. Since then, analyses performed by the World Bank and the London EBRD have shown that there have been significant steps forward in the quality of Czech bankruptcy law. The Czech Republic still lacks an analytical apparatus which can offer a structured characterisation of the general and specific conditions of Czech company and household debt which is subject to current changes in the global economy. This area has so far not been given the attention it deserves. The lack of research is particularly clear as regards analysis of household debt and householders- ability to settle their debts in a reasonable manner using legal and other state means of regulation. We assume that Czech households have recourse to a modern insolvency law, yet the effective application of this law is hampered by the inconsistencies in the formal and informal institutions involved in resolving debt. This in turn is based on the assumption that this lack of consistency is more marked in cases of personal bankruptcy. Our aim is to identify the symptoms which indicate that for some time the effective application of bankruptcy law in the Czech Republic will be hindered by factors originating in householders- relative inability to identify the risks of falling into debt.