An Enterprise Intelligent System Development and Solution Framework

The recent trend has been using hybrid approach rather than using a single intelligent technique to solve the problems. In this paper, we describe and discuss a framework to develop enterprise solutions that are backed by intelligent techniques. The framework not only uses intelligent techniques themselves but it is a complete environment that includes various interfaces and components to develop the intelligent solutions. The framework is completely Web-based and uses XML extensively. It can work like shared plat-form to be accessed by multiple developers, users and decision makers.

Groundwater Level Prediction at a Pilot Area in Southeastern Part of the UAE using Shallow Seismic Method

The groundwater is one of the main sources for sustainability in the United Arab Emirates (UAE). Intensive developments in Al-Ain area lead to increase water demand, which consequently reduced the overall groundwater quantity in major aquifers. However, in certain residential areas within Al-Ain, it has been noticed that the groundwater level is rising, for example in Sha-ab Al Askher area. The reasons for the groundwater rising phenomenon are yet to be investigated. In this work, twenty four seismic refraction profiles have been carried out along the study pilot area; as well as field measurement of the groundwater level in a number of available water wells in the area. The processed seismic data indicated the deepest and shallowest groundwater levels are 15m and 2.3 meters respectively. This result is greatly consistent with the proper field measurement of the groundwater level. The minimum detected value may be referred to perched subsurface water which may be associated to the infiltration from the surrounding water bodies such as lakes, and elevated farms. The maximum values indicate the accurate groundwater level within the study area. The findings of this work may be considered as a preliminary help to the decision makers.

Geometric Operators in the Selection of Human Resources

We study the possibility of using geometric operators in the selection of human resources. We develop three new methods that use the ordered weighted geometric (OWG) operator in different indexes used for the selection of human resources. The objective of these models is to manipulate the neutrality of the old methods so the decision maker is able to select human resources according to his particular attitude. In order to develop these models, first a short revision of the OWG operator is developed. Second, we briefly explain the general process for the selection of human resources. Then, we develop the three new indexes. They will use the OWG operator in the Hamming distance, in the adequacy coefficient and in the index of maximum and minimum level. Finally, an illustrative example about the new approach is given.

A Simplified Single Correlator Rake Receiver for CDMA Communications

This paper presents a single correlator RAKE receiver for direct sequence code division multiple access (DS-CDMA) systems. In conventional RAKE receivers, multiple correlators are used to despread the multipath signals and then to align and combine those signals in a later stage before making a bit decision. The simplified receiver structure presented here uses a single correlator and single code sequence generator to recover the multipaths. Modified Walsh- Hadamard codes are used here for data spreading that provides better uncorrelation properties for the multipath signals. The main advantage of this receiver structure is that it requires only a single correlator and a code generator in contrary to the conventional RAKE receiver concept with multiple correlators. It is shown in results that the proposed receiver achieves better bit error rates in comparison with the conventional one for more than one multipaths.

A Quality Optimization Approach: An Application on Next Generation Networks

The next generation wireless systems, especially the cognitive radio networks aim at utilizing network resources more efficiently. They share a wide range of available spectrum in an opportunistic manner. In this paper, we propose a quality management model for short-term sub-lease of unutilized spectrum bands to different service providers. We built our model on competitive secondary market architecture. To establish the necessary conditions for convergent behavior, we utilize techniques from game theory. Our proposed model is based on potential game approach that is suitable for systems with dynamic decision making. The Nash equilibrium point tells the spectrum holders the ideal price values where profit is maximized at the highest level of customer satisfaction. Our numerical results show that the price decisions of the network providers depend on the price and QoS of their own bands as well as the prices and QoS levels of their opponents- bands.

Motivation Factors to Influence the Decision to Choose Thai Fabric

The purpose of this research was to study the motivation factors to influence the decision to choose Thai Fabric. A multiple-stage sample was utilized to collect 400 samples from working women who had diverse occupations all over Thailand. This research was a quantitative analysis and questionnaire was used a tool to collect data. Descriptive statistics used in this research included percentage, average, and standard deviation and inferential statistics included hypothesis testing of one way ANOVA. The research findings revealed that demographic factors and social factors had an influence to the positive idea of wearing Thai fabric (F = 5.377, P value < 0.05). The respondents who had the age over 41 years old had a better positive idea of wearing Thai fabric than other groups. Moreover, the findings revealed that age had influenced the positive idea of wearing Thai fabric (F = 3.918, P value < 0.05). The respondents who had the age over 41 years old also had stronger believe that wearing Thai fabric to work and social gatherings are socially acceptable than other groups.

An Energy Efficient Cluster Formation Protocol with Low Latency In Wireless Sensor Networks

Data gathering is an essential operation in wireless sensor network applications. So it requires energy efficiency techniques to increase the lifetime of the network. Similarly, clustering is also an effective technique to improve the energy efficiency and network lifetime of wireless sensor networks. In this paper, an energy efficient cluster formation protocol is proposed with the objective of achieving low energy dissipation and latency without sacrificing application specific quality. The objective is achieved by applying randomized, adaptive, self-configuring cluster formation and localized control for data transfers. It involves application - specific data processing, such as data aggregation or compression. The cluster formation algorithm allows each node to make independent decisions, so as to generate good clusters as the end. Simulation results show that the proposed protocol utilizes minimum energy and latency for cluster formation, there by reducing the overhead of the protocol.

Alphanumeric Hand-Prints Classification: Similarity Analysis between Local Decisions

This paper presents the analysis of similarity between local decisions, in the process of alphanumeric hand-prints classification. From the analysis of local characteristics of handprinted numerals and characters, extracted by a zoning method, the set of classification decisions is obtained and the similarity among them is investigated. For this purpose the Similarity Index is used, which is an estimator of similarity between classifiers, based on the analysis of agreements between their decisions. The experimental tests, carried out using numerals and characters from the CEDAR and ETL database, respectively, show to what extent different parts of the patterns provide similar classification decisions.

The Relevance of Data Warehousing and Data Mining in the Field of Evidence-based Medicine to Support Healthcare Decision Making

Evidence-based medicine is a new direction in modern healthcare. Its task is to prevent, diagnose and medicate diseases using medical evidence. Medical data about a large patient population is analyzed to perform healthcare management and medical research. In order to obtain the best evidence for a given disease, external clinical expertise as well as internal clinical experience must be available to the healthcare practitioners at right time and in the right manner. External evidence-based knowledge can not be applied directly to the patient without adjusting it to the patient-s health condition. We propose a data warehouse based approach as a suitable solution for the integration of external evidence-based data sources into the existing clinical information system and data mining techniques for finding appropriate therapy for a given patient and a given disease. Through integration of data warehousing, OLAP and data mining techniques in the healthcare area, an easy to use decision support platform, which supports decision making process of care givers and clinical managers, is built. We present three case studies, which show, that a clinical data warehouse that facilitates evidence-based medicine is a reliable, powerful and user-friendly platform for strategic decision making, which has a great relevance for the practice and acceptance of evidence-based medicine.

Decision Algorithm for Smart Airbag Deployment Safety Issues

Airbag deployment has been known to be responsible for huge death, incidental injuries and broken bones due to low crash severity and wrong deployment decisions. Therefore, the authorities and industries have been looking for more innovative and intelligent products to be realized for future enhancements in the vehicle safety systems (VSSs). Although the VSSs technologies have advanced considerably, they still face challenges such as how to avoid unnecessary and untimely airbag deployments that can be hazardous and fatal. Currently, most of the existing airbag systems deploy without regard to occupant size and position. As such, this paper will focus on the occupant and crash sensing performances due to frontal collisions for the new breed of so called smart airbag systems. It intends to provide a thorough discussion relating to the occupancy detection, occupant size classification, occupant off-position detection to determine safe distance zone for airbag deployment, crash-severity analysis and airbag decision algorithms via a computer modeling. The proposed system model consists of three main modules namely, occupant sensing, crash severity analysis and decision fusion. The occupant sensing system module utilizes the weight sensor to determine occupancy, classify the occupant size, and determine occupant off-position condition to compute safe distance for airbag deployment. The crash severity analysis module is used to generate relevant information pertinent to airbag deployment decision. Outputs from these two modules are fused to the decision module for correct and efficient airbag deployment action. Computer modeling work is carried out using Simulink, Stateflow, SimMechanics and Virtual Reality toolboxes.

A Generic Approach to Achieve Optimal Server Consolidation by Using Existing Servers in Virtualized Data Center

Virtualization-based server consolidation has been proven to be an ideal technique to solve the server sprawl problem by consolidating multiple virtualized servers onto a few physical servers leading to improved resource utilization and return on investment. In this paper, we solve this problem by using existing servers, which are heterogeneous and diversely preferred by IT managers. Five practical consolidation rules are introduced, and a decision model is proposed to optimally allocate source services to physical target servers while maximizing the average resource utilization and preference value. Our model can be regarded as a multi-objective multi-dimension bin-packing (MOMDBP) problem with constraints, which is strongly NP-hard. An improved grouping generic algorithm (GGA) is introduced for the problem. Extensive simulations were performed and the results are given.

Performance Verification of Seismic Design Codes for RC Frames

In this study, a frame work for verification of famous seismic codes is utilized. To verify the seismic codes performance, damage quantity of RC frames is compared with the target performance. Due to the randomness property of seismic design and earthquake loads excitation, in this paper, fragility curves are developed. These diagrams are utilized to evaluate performance level of structures which are designed by the seismic codes. These diagrams further illustrate the effect of load combination and reduction factors of codes on probability of damage exceedance. Two types of structures; very high important structures with high ductility and medium important structures with intermediate ductility are designed by different seismic codes. The Results reveal that usually lower damage ratio generate lower probability of exceedance. In addition, the findings indicate that there are buildings with higher quantity of bars which they have higher probability of damage exceedance. Life-cycle cost analysis utilized for comparison and final decision making process.

Feasibility Analysis Studies on New National R&D Programs in Korea

As a part of evaluation system for R&D program, the Korean government has applied feasibility analysis since 2008. Various professionals put forth a great effort in order to catch up the high degree of freedom of R&D programs, and make contributions to evolving the feasibility analysis. We analyze diverse R&D programs from various viewpoints, such as technology, policy, and Economics, integrate the separate analysis, and finally arrive at a definite result; whether a program is feasible or unfeasible. This paper describes the concept and method of the feasibility analysis as a decision making tool. The analysis unit and content of each criterion, which are key elements in a comprehensive decision making structure, are examined

Algorithmic Method for Efficient Cruise Program

One of the mayor problems of programming a cruise circuit is to decide which destinations to include and which don-t. Thus a decision problem emerges, that might be solved using a linear and goal programming approach. The problem becomes more complex if several boats in the fleet must be programmed in a limited schedule, trying their capacity matches best a seasonal demand and also attempting to minimize the operation costs. Moreover, the programmer of the company should consider the time of the passenger as a limited asset, and would like to maximize its usage. The aim of this work is to design a method in which, using linear and goal programming techniques, a model to design circuits for the cruise company decision maker can achieve an optimal solution within the fleet schedule.

Decision Making with Dempster-Shafer Theory of Evidence Using Geometric Operators

We study the problem of decision making with Dempster-Shafer belief structure. We analyze the previous work developed by Yager about using the ordered weighted averaging (OWA) operator in the aggregation of the Dempster-Shafer decision process. We discuss the possibility of aggregating with an ascending order in the OWA operator for the cases where the smallest value is the best result. We suggest the introduction of the ordered weighted geometric (OWG) operator in the Dempster-Shafer framework. In this case, we also discuss the possibility of aggregating with an ascending order and we find that it is completely necessary as the OWG operator cannot aggregate negative numbers. Finally, we give an illustrative example where we can see the different results obtained by using the OWA, the Ascending OWA (AOWA), the OWG and the Ascending OWG (AOWG) operator.

Autobiographical Memory and Flexible Remembering: Gender Differences

In this study, we examined gender differences in: (1) a flexible remembering task, that asked for episodic memory decisions at an item-specific versus category-based level, and (2) the retrieval specificity of autobiographical memory during free recall. Differences favouring women were found on both measures. Furthermore, a significant association was observed, across gender groups, between level of specificity in the autobiographical memory interview and sensitivity to gist on the flexible remembering task. These results suggest that similar cognitive processes may partially contribute to both the ability for specific autobiographical recall and the capacity for inhibition of gist-information on the flexible remembering task.

A Medical Images Based Retrieval System using Soft Computing Techniques

Content-Based Image Retrieval (CBIR) has been one on the most vivid research areas in the field of computer vision over the last 10 years. Many programs and tools have been developed to formulate and execute queries based on the visual or audio content and to help browsing large multimedia repositories. Still, no general breakthrough has been achieved with respect to large varied databases with documents of difering sorts and with varying characteristics. Answers to many questions with respect to speed, semantic descriptors or objective image interpretations are still unanswered. In the medical field, images, and especially digital images, are produced in ever increasing quantities and used for diagnostics and therapy. In several articles, content based access to medical images for supporting clinical decision making has been proposed that would ease the management of clinical data and scenarios for the integration of content-based access methods into Picture Archiving and Communication Systems (PACS) have been created. This paper gives an overview of soft computing techniques. New research directions are being defined that can prove to be useful. Still, there are very few systems that seem to be used in clinical practice. It needs to be stated as well that the goal is not, in general, to replace text based retrieval methods as they exist at the moment.

Environmental Management of the Tanning Industry's Supply Chain: An Integration Model from Lean Supply Chain, Green Supply Chain, Cleaner Production and ISO 14001:2004

The environmental impact caused by industries is an issue that, in the last 20 years, has become very important in terms of society, economics and politics in Colombia. Particularly, the tannery process is extremely polluting because of uneffective treatments and regulations given to the dumping process and atmospheric emissions. Considering that, this investigation is intended to propose a management model based on the integration of Lean Supply Chain, Green Supply Chain, Cleaner Production and ISO 14001-2004, that prioritizes the strategic components of the organizations. As a result, a management model will be obtained and it will provide a strategic perspective through a systemic approach to the tanning process. This will be achieved through the use of Multicriteria Decision tools, along with Quality Function Deployment and Fuzzy Logic. The strategic approach that embraces the management model using the alignment of Lean Supply Chain, Green Supply Chain, Cleaner Production and ISO 14001-2004, is an integrated perspective that allows a gradual frame of the tactical and operative elements through the correct setting of the information flow, improving the decision making process. In that way, Small Medium Enterprises (SMEs) could improve their productivity, competitiveness and as an added value, the minimization of the environmental impact. This improvement is expected to be controlled through a Dashboard that helps the Organization measure its performance along the implementation of the model in its productive process.

Level of Service Based Methodology for Municipal Infrastructure Management

Development of levels of service in municipal context is a flexible vehicle to assist in performing quality-cost trade-off analysis for municipal services. This trade-off depends on the willingness of a community to pay as well as on the condition of the assets. Community perspective of the performance of an asset from service point of view may be quite different from the municipality perspective of the performance of the same asset from condition point of view. This paper presents a three phased level of service based methodology for water mains that consists of :1)development of an Analytical Hierarchy model of level of service 2) development of Fuzzy Weighted Sum model of water main condition index and 3) deriving a Fuzzy logic based function that maps level of service to asset condition index. This mapping will assist asset managers in quantifying condition improvement requirement to meet service goals and to make more informed decisions on interventions and relayed priorities.

CSOLAP (Continuous Spatial On-Line Analytical Processing)

Decision support systems are usually based on multidimensional structures which use the concept of hypercube. Dimensions are the axes on which facts are analyzed and form a space where a fact is located by a set of coordinates at the intersections of members of dimensions. Conventional multidimensional structures deal with discrete facts linked to discrete dimensions. However, when dealing with natural continuous phenomena the discrete representation is not adequate. There is a need to integrate spatiotemporal continuity within multidimensional structures to enable analysis and exploration of continuous field data. Research issues that lead to the integration of spatiotemporal continuity in multidimensional structures are numerous. In this paper, we discuss research issues related to the integration of continuity in multidimensional structures, present briefly a multidimensional model for continuous field data. We also define new aggregation operations. The model and the associated operations and measures are validated by a prototype.