Performance Analysis of Quantum Cascaded Lasers

Improving the performance of the QCL through block diagram as well as mathematical models is the main scope of this paper. In order to enhance the performance of the underlined device, the mathematical model parameters are used in a reliable manner in such a way that the optimum behavior was achieved. These parameters play the central role in specifying the optical characteristics of the considered laser source. Moreover, it is important to have a large amount of radiated power, where increasing the amount of radiated power represents the main hopping process that can be predicted from the behavior of quantum laser devices. It was found that there is a good agreement between the calculated values from our mathematical model and those obtained with VisSim and experimental results. These demonstrate the strength of mplementation of both mathematical and block diagram models.

Mathematical Modeling of Machining Parameters in Electrical Discharge Machining of FW4 Welded Steel

FW4 is a newly developed hot die material widely used in Forging Dies manufacturing. The right selection of the machining conditions is one of the most important aspects to take into consideration in the Electrical Discharge Machining (EDM) of FW4. In this paper an attempt has been made to develop mathematical models for relating the Material Removal Rate (MRR), Tool Wear Ratio (TWR) and surface roughness (Ra) to machining parameters (current, pulse-on time and voltage). Furthermore, a study was carried out to analyze the effects of machining parameters in respect of listed technological characteristics. The results of analysis of variance (ANOVA) indicate that the proposed mathematical models, can adequately describe the performance within the limits of the factors being studied.

Simulation and Optimization of Mechanisms made of Micro-molded Components

The Institute of Product Development is dealing with the development, design and dimensioning of micro components and systems as a member of the Collaborative Research Centre 499 “Design, Production and Quality Assurance of Molded micro components made of Metallic and Ceramic Materials". Because of technological restrictions in the miniaturization of conventional manufacturing techniques, shape and material deviations cannot be scaled down in the same proportion as the micro parts, rendering components with relatively wide tolerance fields. Systems that include such components should be designed with this particularity in mind, often requiring large clearance. On the end, the output of such systems results variable and prone to dynamical instability. To save production time and resources, every study of these effects should happen early in the product development process and base on computer simulation to avoid costly prototypes. A suitable method is proposed here and exemplary applied to a micro technology demonstrator developed by the CRC499. It consists of a one stage planetary gear train in a sun-planet-ring configuration, with input through the sun gear and output through the carrier. The simulation procedure relies on ordinary Multi Body Simulation methods and subsequently adds other techniques to further investigate details of the system-s behavior and to predict its response. The selection of the relevant parameters and output functions followed the engineering standards for regular sized gear trains. The first step is to quantify the variability and to reveal the most critical points of the system, performed through a whole-mechanism Sensitivity Analysis. Due to the lack of previous knowledge about the system-s behavior, different DOE methods involving small and large amount of experiments were selected to perform the SA. In this particular case the parameter space can be divided into two well defined groups, one of them containing the gear-s profile information and the other the components- spatial location. This has been exploited to explore the different DOE techniques more promptly. A reduced set of parameters is derived for further investigation and to feed the final optimization process, whether as optimization parameters or as external perturbation collective. The 10 most relevant perturbation factors and 4 to 6 prospective variable parameters are considered in a new, simplified model. All of the parameters are affected by the mentioned production variability. The objective functions of interest are based on scalar output-s variability measures, so the problem becomes an optimization under robustness and reliability constrains. The study shows an initial step on the development path of a method to design and optimize complex micro mechanisms composed of wide tolerated elements accounting for the robustness and reliability of the systems- output.

An Approach for Integration of Industrial Robot with Vision System and Simulation Software

Utilization of various sensors has made it possible to extend capabilities of industrial robots. Among these are vision sensors that are used for providing visual information to assist robot controllers. This paper presents a method of integrating a vision system and a simulation program with an industrial robot. The vision system is employed to detect a target object and compute its location in the robot environment. Then, the target object-s information is sent to the robot controller via parallel communication port. The robot controller uses the extracted object information and the simulation program to control the robot arm for approaching, grasping and relocating the object. This paper presents technical details of system components and describes the methodology used for this integration. It also provides a case study to prove the validity of the methodology developed.

A New Method for Complex Goods Selection in Electronic Markets

After the development of the Internet a suitable discipline for trading goods electronically has been emerged. However, this type of markets is not still mature enough in order to become independent and get closer to seller/buyer-s needs. Furthermore, the buyable and sellable goods in these markets still don-t have essential standards for being well-defined. In this paper, we will present a model for development of a market which can contain goods with variable definitions and we will also investigate its characteristics. Besides, by noticing the fact that people have different discriminations, it-s figured out that the significance of each attribute of a specific product may vary from different people-s view points. Consequently we-ll present a model for weighting and accordingly different people-s view points could be satisfied. These two aspects will be discussed completely throughout this paper.

Effect of Mixing Process on Polypropylene Modified Bituminous Concrete Mix Properties

This paper presents a research conducted to investigate the effect of mixing process on polypropylene (PP) modified bitumen mixed with well graded aggregate to form modified bituminous concrete mix. Two mode of mixing, namely dry and wet with different concentration of polymer polypropylene was used with 80/100 pen bitumen, to evaluate the bituminous concrete mix properties. Three percentages of polymer varying from 1-3% by the weight of bitumen was used in this study. Three mixes namely control mix, wet mix and dry mix were prepared. Optimum binder content was calculated considering Marshall Stability, flow, air voids and Marshall Quotient at different bitumen content varying from 4% - 6.5% for control, dry and wet mix. Engineering properties thus obtained at the calculated optimum bitumen content revealed that wet mixing process is advantageous in comparison to dry mixing as it increases the stiffness of the mixture with the increase in polymer content in bitumen. Stiffness value for wet mix increases with the increase in polymer content which is beneficial in terms of rutting. 1% PP dry mix also shows enhanced stiffness, with the air void content limited to 4%.The flow behaviour of dry mix doesn't indicate any major difference with the increase in polymer content revealing that polymer acting as an aggregate only without affecting the viscosity of the binder in the mix. Polypropylene (PP) when interacted with 80 pen base bitumen enhances its performance characteristics which were brought about by altered rheological properties of the modified bitumen. The decrease in flow with the increase in binder content reflects the increase in viscosity of binder which induces the plastic flow in the mix. Workability index indicates that wet mix were easy to compact up to desired void ratio in comparison to dry mix samples.

Towards a UTAUT-based Model for the Study of EGovernment Citizen Acceptance in Saudi Arabia

Among the most fundamental prerequisites for the successful development of electronic Government Services (e- Government) is Citizen Acceptance. Based on the UTAUT model, the paper describes a hypothetical framework that integrates the unique features of E- government to improve our understanding of the acceptance and usage of e-Government Saudi Arabia. The proposed model, based on UTAUT, includes the characteristics of Egovernment, consideration and inclusion of trust, privacy, and Saudi culture and context.

The Female Beauty Myth Fostered by the Mass Media

This paper starts with a critical view of beautiful female images in the mass media being frequently generated by a stereotypical Korean concept of beauty. Several female beauty myths have evolved in Korea during the present decade. Nearly all of them have formed due to a deeply-ingrained androcentric ideology which objectifies women. Mass media causes the public to hold a distorted concept about female beauty. There is a huge gap between women in reality and representative women in the mass media. It is essential to have an unbiased perception of female images presented in the mass media. Due to cosmetic advertisements projecting contemporary images of female beauty to promote products, cosmetics images will be examined in regard to female beauty myths portrayed by the mass media. This paper will analyze features of female beauty myths in Korea and their intrinsic characteristics.

Phosphorus Supplementation of Ammoniated Rice Straw on Rumen Fermentability, Syntesised Microbial Protein and Degradabilityin Vitro

The effect of phosphorus supplementation of ammoniated rice straw was studied. The in vitro experiment was carried out following the first stage of Tilley and Terry method. The treatments consisting of four diets were A = 50% ammoniated rice straw + 50% concentrate (control), B = A + 0.2% Phosphor (P) supplement, C = A + 0.4% Phosphor (P) supplement, and D = A + 0.6% Phosphor (P) supplement of dry matter. Completely randomized design was used as the experimental design with differences among treatment means were examined using Duncan multiple range test. Variables measured were total bacterial and cellulolytic bacterial population, cellulolytic enzyme activity, ammonia (NH3) and volatile fatty acid (VFA) concentrations, as fermentability indicators and synthesized microbial protein, as well as degradability indicators including dry matter (DM), organic matter (OM), neutral detergent fibre (NDF), acid detergent fibre (ADF) and cellulose. The results indicated that fermentability and degradability of diets consisting ammoniated rice straw with P supplementation were significantly higher than the control diet (P< 0.05). It is concluded that P supplementation is important to improve fermentability and degradability of rations containing ammoniated RS and concentrate. In terms of the most effective level of P supplementation occurred at a supplementation rate of 0.4% of dry matter.

An Efficient Classification Method for Inverse Synthetic Aperture Radar Images

This paper proposes an efficient method to classify inverse synthetic aperture (ISAR) images. Because ISAR images can be translated and rotated in the 2-dimensional image place, invariance to the two factors is indispensable for successful classification. The proposed method achieves invariance to translation and rotation of ISAR images using a combination of two-dimensional Fourier transform, polar mapping and correlation-based alignment of the image. Classification is conducted using a simple matching score classifier. In simulations using the real ISAR images of five scaled models measured in a compact range, the proposed method yields classification ratios higher than 97 %.

ZBTB17 Gene rs10927875 Polymorphism in Slovak Patients with Dilated Cardiomyopathy

Dilated cardiomyopathy (DCM) is a severe cardiovascular disorder characterized by progressive systolic dysfunction due to cardiac chamber dilatation and inefficient myocardial contractility often leading to chronic heart failure. Recently, a genome-wide association studies (GWASs) on DCM indicate that the ZBTB17 gene rs10927875 single nucleotide polymorphism is associated with DCM. The aim of the study was to identify the distribution of ZBTB17 gene rs10927875 polymorphism in 50 Slovak patients with DCM and 80 healthy control subjects using the Custom Taqman®SNP Genotyping assays. Risk factors detected at baseline in each group included age, sex, body mass index, smoking status, diabetes and blood pressure. The mean age of patients with DCM was 52.9±6.3 years; the mean age of individuals in control group was 50.3±8.9 years. The distribution of investigated genotypes of rs10927875 polymorphism within ZBTB17 gene in the cohort of Slovak patients with DCM was as follows: CC (38.8%), CT (55.1%), TT (6.1%), in controls: CC (43.8%), CT (51.2%), TT (5.0%). The risk allele T was more common among the patients with dilated cardiomyopathy than in normal controls (33.7% versus 30.6%). The differences in genotype or allele frequencies of ZBTB17 gene rs10927875 polymorphism were not statistically significant (p=0.6908; p=0.6098). The results of this study suggest that ZBTB17 gene rs10927875 polymorphism may be a risk factor for susceptibility to DCM in Slovak patients with DCM. Studies of numerous files and additional functional investigations are needed to fully understand the roles of genetic associations.

Image Segmentation Using Suprathreshold Stochastic Resonance

In this paper a new concept of partial complement of a graph G is introduced and using the same a new graph parameter, called completion number of a graph G, denoted by c(G) is defined. Some basic properties of graph parameter, completion number, are studied and upperbounds for completion number of classes of graphs are obtained , the paper includes the characterization also.

Nonlinearity and Spectrum Analysis of Drill Strings with Component Mass Unbalance

This paper analyses the non linear properties exhibited by a drill string system under various un balanced mass conditions. The drill string is affected by continuous friction in the form of drill bit and well bore hole interactions. This paper proves the origin of limit cycling and increase of non linearity with increase in speed of the drilling in the presence of friction. The spectrum of the frequency response is also studied to detect the presence of vibration abnormalities arising during the drilling process.

Recognition of Isolated Handwritten Latin Characters using One Continuous Route of Freeman Chain Code Representation and Feedforward Neural Network Classifier

In a handwriting recognition problem, characters can be represented using chain codes. The main problem in representing characters using chain code is optimizing the length of the chain code. This paper proposes to use randomized algorithm to minimize the length of Freeman Chain Codes (FCC) generated from isolated handwritten characters. Feedforward neural network is used in the classification stage to recognize the image characters. Our test results show that by applying the proposed model, we reached a relatively high accuracy for the problem of isolated handwritten when tested on NIST database.

Current Distribution and Cathode Flooding Prediction in a PEM Fuel Cell

Non-uniform current distribution in polymer electrolyte membrane fuel cells results in local over-heating, accelerated ageing, and lower power output than expected. This issue is very critical when fuel cell experiences water flooding. In this work, the performance of a PEM fuel cell is investigated under cathode flooding conditions. Two-dimensional partially flooded GDL models based on the conservation laws and electrochemical relations are proposed to study local current density distributions along flow fields over a wide range of cell operating conditions. The model results show a direct association between cathode inlet humidity increases and that of average current density but the system becomes more sensitive to flooding. The anode inlet relative humidity shows a similar effect. Operating the cell at higher temperatures would lead to higher average current densities and the chance of system being flooded is reduced. In addition, higher cathode stoichiometries prevent system flooding but the average current density remains almost constant. The higher anode stoichiometry leads to higher average current density and higher sensitivity to cathode flooding.

Multi-Objective Planning and Operation of Water Supply Systems Subject to Climate Change

Many water supply systems in Australia are currently undergoing significant reconfiguration due to reductions in long term average rainfall and resulting low inflows to water supply reservoirs since the second half of the 20th century. When water supply systems undergo change, it is necessary to develop new operating rules, which should consider climate, because the climate change is likely to further reduce inflows. In addition, water resource systems are increasingly intended to be operated to meet complex and multiple objectives representing social, economic, environmental and sustainability criteria. This is further complicated by conflicting preferences on these objectives from diverse stakeholders. This paper describes a methodology to develop optimum operating rules for complex multi-reservoir systems undergoing significant change, considering all of the above issues. The methodology is demonstrated using the Grampians water supply system in northwest Victoria, Australia. Initial work conducted on the project is also presented in this paper.

Influence of Flood Detention Capability in Flood Prevention for Flood Disaster of Depression Area

Rainfall records of rainfall station including the rainfall potential per hour and rainfall mass of five heavy storms are explored, respectively from 2001 to 2010. The rationalization formula is to investigate the capability of flood peak duration of flood detention pond in different rainfall conditions. The stable flood detention model is also proposed by using system dynamic control theory to get the message of flood detention pond in this research. When rainfall frequency of one hour rainfall duration is more than 100-year frequency which exceeds the flood detention standard of 20-year frequency for the flood detention pond, the flood peak duration of flood detention pond is 1.7 hours at most even though the flood detention pond with maximum drainage potential about 15.0 m3/s of pumping system is constructed. If the rainfall peak current is more than maximum drainage potential, the flood peak duration of flood detention pond is about 1.9 hours at most. The flood detention pond is the key factor of stable drainage control and flood prevention. The critical factors of flood disaster is not only rainfall mass, but also rainfall frequency of heavy storm in different rainfall duration and flood detention frequency of flood detention system.

All-Pairs Shortest-Paths Problem for Unweighted Graphs in O(n2 log n) Time

Given a simple connected unweighted undirected graph G = (V (G), E(G)) with |V (G)| = n and |E(G)| = m, we present a new algorithm for the all-pairs shortest-path (APSP) problem. The running time of our algorithm is in O(n2 log n). This bound is an improvement over previous best known O(n2.376) time bound of Raimund Seidel (1995) for general graphs. The algorithm presented does not rely on fast matrix multiplication. Our algorithm with slight modifications, enables us to compute the APSP problem for unweighted directed graph in time O(n2 log n), improving a previous best known O(n2.575) time bound of Uri Zwick (2002).

Communication Engineering Curriculum (Past, Present and the Future)

At present time, competition, unpredictable fluctuations have made communication engineering education in the global sphere really difficult. Confront with new situation in the engineering education sector. Communication engineering education has to be reformed and ready to use more advanced technologies. We realized that one of the general problems of student`s education is that after graduating from their universities, they are not prepared to face the real life challenges and full skilled to work in industry. They are prepared only to think like engineers and professionals but they also need to possess some others non-technical skills. In today-s environment, technical competence alone is not sufficient for career success. Employers want employees (graduate engineers) who have good oral and written communication (soft) skills. It does require for team work, business awareness, organization, management skills, responsibility, initiative, problem solving and IT competency. This proposed curriculum brings interactive, creative, interesting, effective learning methods, which includes online education, virtual labs, practical work, problem-based learning (PBL), and lectures given by industry experts. Giving short assignments, presentations, reports, research papers and projects students can significantly improve their non-technical skills. Also, we noticed the importance of using ICT technologies in engineering education which used by students and teachers, and included that into proposed teaching and learning methods. We added collaborative learning between students through team work which builds theirs skills besides course materials. The prospective on this research that we intent to update communication engineering curriculum in order to get fully constructed engineer students to ready for real industry work.

Earth Station Neural Network Control Methodology and Simulation

Renewable energy resources are inexhaustible, clean as compared with conventional resources. Also, it is used to supply regions with no grid, no telephone lines, and often with difficult accessibility by common transport. Satellite earth stations which located in remote areas are the most important application of renewable energy. Neural control is a branch of the general field of intelligent control, which is based on the concept of artificial intelligence. This paper presents the mathematical modeling of satellite earth station power system which is required for simulating the system.Aswan is selected to be the site under consideration because it is a rich region with solar energy. The complete power system is simulated using MATLAB–SIMULINK.An artificial neural network (ANN) based model has been developed for the optimum operation of earth station power system. An ANN is trained using a back propagation with Levenberg–Marquardt algorithm. The best validation performance is obtained for minimum mean square error. The regression between the network output and the corresponding target is equal to 96% which means a high accuracy. Neural network controller architecture gives satisfactory results with small number of neurons, hence better in terms of memory and time are required for NNC implementation. The results indicate that the proposed control unit using ANN can be successfully used for controlling the satellite earth station power system.