Development of Mechanical Properties of Self Compacting Concrete Contain Rice Husk Ash

Self-compacting concrete (SCC), a new kind of high performance concrete (HPC) have been first developed in Japan in 1986. The development of SCC has made casting of dense reinforcement and mass concrete convenient, has minimized noise. Fresh self-compacting concrete (SCC) flows into formwork and around obstructions under its own weight to fill it completely and self-compact (without any need for vibration), without any segregation and blocking. The elimination of the need for compaction leads to better quality concrete and substantial improvement of working conditions. SCC mixes generally have a much higher content of fine fillers, including cement, and produce excessively high compressive strength concrete, which restricts its field of application to special concrete only. To use SCC mixes in general concrete construction practice, requires low cost materials to make inexpensive concrete. Rice husk ash (RHA) has been used as a highly reactive pozzolanic material to improve the microstructure of the interfacial transition zone (ITZ) between the cement paste and the aggregate in self compacting concrete. Mechanical experiments of RHA blended Portland cement concretes revealed that in addition to the pozzolanic reactivity of RHA (chemical aspect), the particle grading (physical aspect) of cement and RHA mixtures also exerted significant influences on the blending efficiency. The scope of this research was to determine the usefulness of Rice husk ash (RHA) in the development of economical self compacting concrete (SCC). The cost of materials will be decreased by reducing the cement content by using waste material like rice husk ash instead of. This paper presents a study on the development of Mechanical properties up to 180 days of self compacting and ordinary concretes with rice-husk ash (RHA), from a rice paddy milling industry in Rasht (Iran). Two different replacement percentages of cement by RHA, 10%, and 20%, and two different water/cementicious material ratios (0.40 and 0.35), were used for both of self compacting and normal concrete specimens. The results are compared with those of the self compacting concrete without RHA, with compressive, flexural strength and modulus of elasticity. It is concluded that RHA provides a positive effect on the Mechanical properties at age after 60 days. Base of the result self compacting concrete specimens have higher value than normal concrete specimens in all test except modulus of elasticity. Also specimens with 20% replacement of cement by RHA have the best performance.

Thermo-mechanical Deformation Behavior of Functionally Graded Rectangular Plates Subjected to Various Boundary Conditions and Loadings

This paper deals with the thermo-mechanical deformation behavior of shear deformable functionally graded ceramicmetal (FGM) plates. Theoretical formulations are based on higher order shear deformation theory with a considerable amendment in the transverse displacement using finite element method (FEM). The mechanical properties of the plate are assumed to be temperaturedependent and graded in the thickness direction according to a powerlaw distribution in terms of the volume fractions of the constituents. The temperature field is supposed to be a uniform distribution over the plate surface (XY plane) and varied in the thickness direction only. The fundamental equations for the FGM plates are obtained using variational approach by considering traction free boundary conditions on the top and bottom faces of the plate. A C0 continuous isoparametric Lagrangian finite element with thirteen degrees of freedom per node have been employed to accomplish the results. Convergence and comparison studies have been performed to demonstrate the efficiency of the present model. The numerical results are obtained for different thickness ratios, aspect ratios, volume fraction index and temperature rise with different loading and boundary conditions. Numerical results for the FGM plates are provided in dimensionless tabular and graphical forms. The results proclaim that the temperature field and the gradient in the material properties have significant role on the thermo-mechanical deformation behavior of the FGM plates.

Pressure Study on Mn Doped KDP System under Hydrostatic Pressure

High Pressure Raman scattering measurements of KDP:Mn were performed at room temperatures. The X-ray powder diffraction patterns taken at room temperature by Rietveld refinement showed that doped samples of KDP-Mn have the same tetragonal structure of a pure KDP crystal, but with a contraction of the crystalline cell. The behavior of the Raman spectra, in particular the emergence of a new modes at 330 cm-1, indicates that KDP:Mn undergoes a structural phase transition with onset at around 4 GP. First principle density-functional theory (DFT) calculations indicate that tetrahedral rotation with pressure is predominantly around the c crystalline direction. Theoretical results indicates that pressure induced tetrahedral rotations leads to change tetrahedral neighborhood, activating librations/bending modes observed for high pressure phase of KDP:Mn with stronger Raman activity.

The Micro Ecosystem Restoration Mechanism Applied for Feasible Research of Lakes Eutrophication Enhancement

The technique of inducing micro ecosystem restoration is one of aquatic ecology engineering methods used to retrieve the polluted water. Batch scale study, pilot plant study, and field study were carried out to observe the eutrophication using the Inducing Ecology Restorative Symbiosis Agent (IERSA) consisting mainly degraded products by using lactobacillus, saccharomycete, and phycomycete. The results obtained from the experiments of the batch scale and pilot plant study allowed us to development the parameters for the field study. A pond, 5 m to the outlet of a lake, with an area of 500 m2 and depth of 0.6-1.2 m containing about 500 tons of water was selected as a model. After the treatment with 10 mg IERSA/L water twice a week for 70 days, the micro restoration mechanisms consisted of three stages (i.e., restoration, impact maintenance, and ecology recovery experiment after impact). The COD, TN, TKN, and chlorophyll a were reduced significantly in the first week. Although the unexpected heavy rain and contaminate from sewage system might slow the ecology restoration. However, the self-cleaning function continued and the chlorophyll a reduced for 50% in one month. In the 4th week, amoeba, paramecium, rotifer, and red wriggle worm reappeared, and the number of fish flies appeared up to1000 fish fries/m3. Those results proved that inducing restorative mechanism can be applied to improve the eutrophication and to control the growth of algae in the lakes by gaining the selfcleaning through inducing and competition of microbes. The situation for growth of fishes also can reach an excellent result due to the improvement of water quality.

Planning of Road Infrastructure Financing: Computational Finance Viewpoint

Lack of resources for road infrastructure financing is a problem that currently affects not only eastern European economies but also many other countries especially in relation to the impact of global financial crisis. In this context, we are talking about the socalled short-investment problem as a result of long-term lack of investment resources. Based on an analysis of road infrastructure financing in the Czech Republic this article points out at weaknesses of current system and proposes a long-term planning methodology supported by system approach. Within this methodology and using created system dynamic model the article predicts the development of short-investment problem in the Country and in reaction on the downward trend of certain sources the article presents various scenarios resulting from the change of the structure of financial sources. In the discussion the article focuses more closely on the possibility of introduction of tax on vehicles instead of taxes with declining revenue streams and estimates its approximate price in relation to reaching various solutions of short-investment in time.

Svision: Visual Identification of Scanning and Denial of Service Attacks

We propose a novel graphical technique (SVision) for intrusion detection, which pictures the network as a community of hosts independently roaming in a 3D space defined by the set of services that they use. The aim of SVision is to graphically cluster the hosts into normal and abnormal ones, highlighting only the ones that are considered as a threat to the network. Our experimental results using DARPA 1999 and 2000 intrusion detection and evaluation datasets show the proposed technique as a good candidate for the detection of various threats of the network such as vertical and horizontal scanning, Denial of Service (DoS), and Distributed DoS (DDoS) attacks.

Preserving Melon by Osmotic Dehydration in a Ternary System

In this study, the kinetics of osmotic dehydration of melons (Tille variety) in a ternary system followed by air-drying for preserving melons in the summer to be used in the winter were investigated. The effect of different osmotic solution concentrations 30, 40 and 50% (w/w) of sucrose with 10% NaCl salt and fruit to solution ratios 1:4, 1:5 and 1:6 on the mass transfer kinetics during osmotic dehydration of melon in ternary solution namely sucrosesalt- water followed by air-drying were studied. The diffusivity of water during air-drying was enhanced after the fruit samples were immersed in the osmotic solution after 60 min. Samples non-treated and pre-treated during one hour in osmotic solutions with 60% (w/w) of sucrose with 10% NaCl salt and fruit to solution ratio of 1:4 were dried in a hot air-dryer at 60oC (2 m/s) until equilibrium was achieved.

2D Rigid Registration of MR Scans using the 1d Binary Projections

This paper presents the application of a signal intensity independent registration criterion for 2D rigid body registration of medical images using 1D binary projections. The criterion is defined as the weighted ratio of two projections. The ratio is computed on a pixel per pixel basis and weighting is performed by setting the ratios between one and zero pixels to a standard high value. The mean squared value of the weighted ratio is computed over the union of the one areas of the two projections and it is minimized using the Chebyshev polynomial approximation using n=5 points. The sum of x and y projections is used for translational adjustment and a 45deg projection for rotational adjustment. 20 T1- T2 registration experiments were performed and gave mean errors 1.19deg and 1.78 pixels. The method is suitable for contour/surface matching. Further research is necessary to determine the robustness of the method with regards to threshold, shape and missing data.

Preservation of Molecular Ozone in a Clathrate Hydrate : Three-Phase (Gas + Liquid + Hydrate) Equilibrium Measurements for O3 + O2 + CO2 + H2O Systems

This paper reports the three-phase (gas + liquid + hydrate) equilibrium pressure versus temperature data for a (O3 + O2 + CO2 + H2O) system for developing the hydrate-based technology to preserve ozone, a chemically unstable substance, for various industrial, medical and consumer uses. These data cover the temperature range from 272 K to 277 K, corresponding to pressures from 1.6 MPa to 3.1 MPa, for each of the three different (O3 + O2)-to-CO2 or O2-to-CO2 molar ratios in the gas phase, which are approximately 4 : 6, 5 : 5, respectively. The mole fraction of ozone in the gas phase was ~0.03 , which are the densest ozone fraction to artificially form O3 containing hydrate ever reported in the literature. Based on these data, the formation of hydrate containing high-concentration ozone, as high as 1 mass %, will be expected.

A Power-Gating Scheme to Reduce Leakage Power for P-type Adiabatic Logic Circuits

With rapid technology scaling, the proportion of the static power consumption catches up with dynamic power consumption gradually. To decrease leakage consumption is becoming more and more important in low-power design. This paper presents a power-gating scheme for P-DTGAL (p-type dual transmission gate adiabatic logic) circuits to reduce leakage power dissipations under deep submicron process. The energy dissipations of P-DTGAL circuits with power-gating scheme are investigated in different processes, frequencies and active ratios. BSIM4 model is adopted to reflect the characteristics of the leakage currents. HSPICE simulations show that the leakage loss is greatly reduced by using the P-DTGAL with power-gating techniques.

Supercompression for Full-HD and 4k-3D (8k)Digital TV Systems

In this work, we developed the concept of supercompression, i.e., compression above the compression standard used. In this context, both compression rates are multiplied. In fact, supercompression is based on super-resolution. That is to say, supercompression is a data compression technique that superpose spatial image compression on top of bit-per-pixel compression to achieve very high compression ratios. If the compression ratio is very high, then we use a convolutive mask inside decoder that restores the edges, eliminating the blur. Finally, both, the encoder and the complete decoder are implemented on General-Purpose computation on Graphics Processing Units (GPGPU) cards. Specifically, the mentio-ned mask is coded inside texture memory of a GPGPU.

Surface Flattening based on Linear-Elastic Finite Element Method

This paper presents a linear-elastic finite element method based flattening algorithm for three dimensional triangular surfaces. First, an intrinsic characteristic preserving method is used to obtain the initial developing graph, which preserves the angles and length ratios between two adjacent edges. Then, an iterative equation is established based on linear-elastic finite element method and the flattening result with an equilibrium state of internal force is obtained by solving this iterative equation. The results show that complex surfaces can be dealt with this proposed method, which is an efficient tool for the applications in computer aided design, such as mould design.

Particle Simulation of Rarefied Gas Flows witha Superimposed Wall Surface Temperature Gradient in Microgeometries

Rarefied gas flows are often occurred in micro electro mechanical systems and classical CFD could not precisely anticipate the flow and thermal behavior due to the high Knudsen number. Therefore, the heat transfer and the fluid dynamics characteristics of rarefied gas flows in both a two-dimensional simple microchannel and geometry similar to single Knudsen compressor have been investigated with a goal of increasing performance of a actual Knudsen compressor by using a particle simulation method. Thermal transpiration and thermal creep, which are rarefied gas dynamic phenomena, that cause movement of the flow from less to higher temperature is generated by using two different longitude temperature gradients (Linear, Step) along the walls of the flow microchannel. In this study the influence of amount of temperature gradient and governing pressure in various Knudsen numbers and length-to-height ratios have been examined.

Integrated Approaches to Enhance Aggregate Production Planning with Inventory Uncertainty Based On Improved Harmony Search Algorithm

This work presents a multiple objective linear programming (MOLP) model based on the desirability function approach for solving the aggregate production planning (APP) decision problem upon Masud and Hwang-s model. The proposed model minimises total production costs, carrying or backordering costs and rates of change in labor levels. An industrial case demonstrates the feasibility of applying the proposed model to the APP problems with three scenarios of inventory levels. The proposed model yields an efficient compromise solution and the overall levels of DM satisfaction with the multiple combined response levels. There has been a trend to solve complex planning problems using various metaheuristics. Therefore, in this paper, the multi-objective APP problem is solved by hybrid metaheuristics of the hunting search (HuSIHSA) and firefly (FAIHSA) mechanisms on the improved harmony search algorithm. Results obtained from the solution of are then compared. It is observed that the FAIHSA can be used as a successful alternative solution mechanism for solving APP problems over three scenarios. Furthermore, the FAIHSA provides a systematic framework for facilitating the decision-making process, enabling a decision maker interactively to modify the desirability function approach and related model parameters until a good optimal solution is obtained with proper selection of control parameters when compared.

Phase Noise Impact on BER in Space Communication

This paper deals with the modeling and the evaluation of a multiplicative phase noise influence on the bit error ratio in a general space communication system. Our research is focused on systems with multi-state phase shift keying modulation techniques and it turns out, that the phase noise significantly affects the bit error rate, especially for higher signal to noise ratios. These results come from a system model created in Matlab environment and are shown in a form of constellation diagrams and bit error rate dependencies. The change of a user data bit rate is also considered and included into simulation results. Obtained outcomes confirm theoretical presumptions.

Application of Adaptive Neuro-Fuzzy Inference System in the Prediction of Economic Crisis Periods in USA

In this paper discrete choice models, Logit and Probit are examined in order to predict the economic recession or expansion periods in USA. Additionally we propose an adaptive neuro-fuzzy inference system with triangular membership function. We examine the in-sample period 1947-2005 and we test the models in the out-of sample period 2006-2009. The forecasting results indicate that the Adaptive Neuro-fuzzy Inference System (ANFIS) model outperforms significant the Logit and Probit models in the out-of sample period. This indicates that neuro-fuzzy model provides a better and more reliable signal on whether or not a financial crisis will take place.

Numerical Investigation of Delamination in Carbon-Epoxy Composite using Arcan Specimen

In this paper delamination phenomenon in Carbon-Epoxy laminated composite material is investigated numerically. Arcan apparatus and specimen is modeled in ABAQUS finite element software for different loading conditions and crack geometries. The influence of variation of crack geometry on interlaminar fracture stress intensity factor and energy release rate for various mixed mode ratios and pure mode I and II was studied. Also, correction factors for this specimen for different crack length ratios were calculated. The finite element results indicate that for loading angles close to pure mode-II loading, a high ratio of mode-II to mode-I fracture is dominant and there is an opposite trend for loading angles close to pure mode-I loading. It confirms that by varying the loading angle of Arcan specimen pure mode-I, pure mode-II and a wide range of mixed-mode loading conditions can be created and tested. Also, numerical results confirm that the increase of the mode- II loading contribution leads to an increase of fracture resistance in the CF/PEI composite (i.e., a reduction in the total strain energy release rate) and the increase of the crack length leads to a reduction of interlaminar fracture resistance in the CF/PEI composite (i.e., an increase in the total interlaminar strain energy release rate).

Information Transmission between Large and Small Stocks in the Korean Stock Market

Little attention has been paid to information transmission between the portfolios of large stocks and small stocks in the Korean stock market. This study investigates the return and volatility transmission mechanisms between large and small stocks in the Korea Exchange (KRX). This study also explores whether bad news in the large stock market leads to a volatility of the small stock market that is larger than the good news volatility of the large stock market. By employing the Granger causality test, we found unidirectional return transmissions from the large stocks to medium and small stocks. This evidence indicates that pat information about the large stocks has a better ability to predict the returns of the medium and small stocks in the Korean stock market. Moreover, by using the asymmetric GARCH-BEKK model, we observed the unidirectional relationship of asymmetric volatility transmission from large stocks to the medium and small stocks. This finding suggests that volatility in the medium and small stocks following a negative shock in the large stocks is larger than that following a positive shock in the large stocks.

A Visual Educational Modeling Language to Help Teachers in Learning Scenario Design

The success of an e-learning system is highly dependent on the quality of its educational content and how effective, complete, and simple the design tool can be for teachers. Educational modeling languages (EMLs) are proposed as design languages intended to teachers for modeling diverse teaching-learning experiences, independently of the pedagogical approach and in different contexts. However, most existing EMLs are criticized for being too abstract and too complex to be understood and manipulated by teachers. In this paper, we present a visual EML that simplifies the process of designing learning scenarios for teachers with no programming background. Based on the conceptual framework of the activity theory, our resulting visual EML focuses on using Domainspecific modeling techniques to provide a pedagogical level of abstraction in the design process.

Securing Message in Wireless Sensor Network by using New Method of Code Conversions

Recently, wireless sensor networks have been paid more interest, are widely used in a lot of commercial and military applications, and may be deployed in critical scenarios (e.g. when a malfunctioning network results in danger to human life or great financial loss). Such networks must be protected against human intrusion by using the secret keys to encrypt the exchange messages between communicating nodes. Both the symmetric and asymmetric methods have their own drawbacks for use in key management. Thus, we avoid the weakness of these two cryptosystems and make use of their advantages to establish a secure environment by developing the new method for encryption depending on the idea of code conversion. The code conversion-s equations are used as the key for designing the proposed system based on the basics of logic gate-s principals. Using our security architecture, we show how to reduce significant attacks on wireless sensor networks.