Supercompression for Full-HD and 4k-3D (8k)Digital TV Systems

In this work, we developed the concept of supercompression, i.e., compression above the compression standard used. In this context, both compression rates are multiplied. In fact, supercompression is based on super-resolution. That is to say, supercompression is a data compression technique that superpose spatial image compression on top of bit-per-pixel compression to achieve very high compression ratios. If the compression ratio is very high, then we use a convolutive mask inside decoder that restores the edges, eliminating the blur. Finally, both, the encoder and the complete decoder are implemented on General-Purpose computation on Graphics Processing Units (GPGPU) cards. Specifically, the mentio-ned mask is coded inside texture memory of a GPGPU.

Authors:



References:
[1] M. Mastriani, "Single Frame Supercompression of Still Images, Video,
High Definition TV and Digital Cinema", International Journal of
Information and Mathematical Sciences, vol. 6:3, pp. 143-159, 2010.
[2] A. Gilman, D. G. Bailey, S. R. Marsland, "Interpolation Models for
Image Super-resolution," in Proc. 4th IEEE International Symposium on
Electronic Design, Test & Applications, DELTA 2008, Hong Kong,
2008, pp.55-60.
[3] D. Glassner, S. Bagon, M. Irani. Super-Resolution from a Single Image.
Available:
http://www.wisdom.weizmann.ac.il/~vision/single_image_SR/files/singl
e_image_SR.pdf
[4] A. Lukin, A. S. Krylov, A. Nasonov. Image Interpolation by Super-
Resolution. Available:
http://graphicon.ru/oldgr/en/publications/text/LukinKrylovNasonov.pdf
[5] Y. Huang, "Wavelet-based image interpolation using multilayer
perceptrons," Neural Comput. & Applic., vol.14, pp.1-10, 2005.
[6] N. Mueller, Y. Lu, and M. N. Do. Image interpolation using multiscale
geometric representations. Avalilable:
http://lcav.epfl.ch/~lu/papers/interp_contourlet.pdf
[7] S.H.M. Allon, M.G. Debertrand, and B.T.H.M. Sleutjes, "Fast
Deblurring Algorithms", 2004. Available:
http://www.bmi2.bmt.tue.nl/image-analysis/Education/OGO/0504-
3.2bDeblur/OGO3.2b_2004_Deblur.pdf
[8] A. Bennia and S.M. Riad, Filtering Capabilities and Convergence of the
Van-Cittert Deconvolution Technique, IEEE, Trans. Instrum. Meas.,
Vol. 41, no. 2, pp. 246-250, Apr. 1992.
[9] M. Kraus, M. Eissele, and M. Strengert. GPU-Based Edge-Directed
Image Interpolation. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.69.5655
[10] -. NVIDIA CUDA: Best Practices Guide, version 3.0, 2/4/2010.
Available:
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/N
VIDIA_CUDA_BestPracticesGuide.pdf
[11] V. Podlozhnyuk. Image Convolution with CUDA, June 2007. Available:
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projec
ts/convolutionSeparable/doc/convolutionSeparable.pdf
[12] V. Simek, and R. Rakesh, "GPU Acceleration of 2D-DWT Image
Compression in MATLAB with CUDA," in Proc. Second UKSIM
European Symposium on Computer Modeling and Simulations,
Liverpool, UK, 2008, pp.274-277.
[13] R.C. Gonzalez, R.E. Woods, Digital Image Processing, 2nd Edition,
Prentice- Hall, Jan. 2002, pp.675-683.
[14] A.K. Jain, Fundamentals of Digital Image Processing, Englewood
Cliffs, New Jersey, 1989.
[15] I. E. Richardson, H.264 and MPEG-4 Video Compression: Video
Coding for Next Generation Multimedia, Ed. Wiley, N.Y., 2003.
[16] http://www.dixarinc.com
[17] http://www.forumsbtvd.org.br/
[18] NVIDIA® (NVIDIA Corporation, Santa Clara, CA).
[19] http://www.untref.edu.ar/carreras_de_grado/ing_computacion.htm
[20] J. Miano, Compressed Image File Formats: JPEG, PNG, GIF, XBM,
BMP; Ed. Addison-Wesley, N.Y., 1999.
[21] T. Acharya, and P-S Tsai, JPEG2000 Standard for Image Compression:
Concepts, Algorithms and VLSI Architectures, Ed. Wiley, N.Y., 2005.
[22] A. Bilgin, and M. W. Marcellin, "JPEG2000 for Digital Cinema" in
Proceedings of 2006 International Symposium on Circuits and Systems
(ISCAS), (invited paper), May 2006.
[23] MATLAB® R2010b (Mathworks, Natick, MA).