Hopfield Network as Associative Memory with Multiple Reference Points

Hopfield model of associative memory is studied in this work. In particular, two main problems that it possesses: the apparition of spurious patterns in the learning phase, implying the well-known effect of storing the opposite pattern, and the problem of its reduced capacity, meaning that it is not possible to store a great amount of patterns without increasing the error probability in the retrieving phase. In this paper, a method to avoid spurious patterns is presented and studied, and an explanation of the previously mentioned effect is given. Another technique to increase the capacity of a network is proposed here, based on the idea of using several reference points when storing patterns. It is studied in depth, and an explicit formula for the capacity of the network with this technique is provided.

Integrated Method for Detection of Unknown Steganographic Content

This article concerns the presentation of an integrated method for detection of steganographic content embedded by new unknown programs. The method is based on data mining and aggregated hypothesis testing. The article contains the theoretical basics used to deploy the proposed detection system and the description of improvement proposed for the basic system idea. Further main results of experiments and implementation details are collected and described. Finally example results of the tests are presented.

An Experimental Investigation on the Behavior of Pressure Tube under Symmetrical and Asymmetrical Heating Conditions in an Indian PHWR

Thermal behavior of fuel channel under loss of coolant accident (LOCA) is a major concern for nuclear reactor safety. LOCA along with failure of emergency cooling water system (ECC) may leads to mechanical deformations like sagging and ballooning. In order to understand the phenomenon an experiment has been carried out using 19 pin fuel element simulator. Main purpose of the experiment was to trace temperature profiles over the pressure tube, calandria tube and clad tubes of Indian Pressurized Heavy Water Reactor (IPHWR) under symmetrical and asymmetrical heat-up conditions. For simulating the fully voided scenario, symmetrical heating of pressure was carried out by injecting 13.2 KW (2 % of nominal power) to all the 19 pins and the temperatures of pressure tube, calandria tube and clad tubes were measured. During symmetrical heating the sagging of fuel channel was initiated at 460 °C and the highest temperature attained by PT was 650 °C . The decay heat from clad tubes was dissipated to moderator mainly by radiation and natural convection. The highest temperature of 680 °C was observed over the outer ring of clad tubes of fuel simulator. Again, to simulate partially voided condition, asymmetrical heating of pressure was carried out by supplying 8.0 kW power to upper 8 pins of fuel simulator and temperature profiles were measured. Along the circumference of pressure tube (PT) the highest temperature difference of 320 °C was observed, which highlights the magnitude of thermal stresses under partially voided conditions.

Fabrication of Autonomous Wheeled Mobile Robot for Industrial Applications Using Appropriate Technology

The autonomous mobile robot was designed and implemented which was capable of navigating in the industrial environments and did a job of picking objects from variable height and delivering it to another location following a predefined trajectory. In developing country like Bangladesh industrial robotics is not very prevalent yet, due to the high installation cost. The objective of this project was to develop an autonomous mobile robot for industrial application using the available resources in the local market at lower manufacturing cost. The mechanical system of the robot was comprised of locomotion, gripping and elevation system. Grippers were designed to grip objects of a predefined shape. Cartesian elevation system was designed for vertical movement of the gripper. PIC18F452 microcontroller was the brain of the control system. The prototype autonomous robot was fabricated for relatively lower load than the industry and the performance was tested in a virtual industrial environment created within the laboratory to realize the effectiveness.

Assessment of the Adaptive Pushover Analysis Using Displacement-based Loading in Prediction the Seismic Behaviour of the Unsymmetric-Plan Buildings

The recent drive for use of performance-based methodologies in design and assessment of structures in seismic areas has significantly increased the demand for the development of reliable nonlinear inelastic static pushover analysis tools. As a result, the adaptive pushover methods have been developed during the last decade, which unlike their conventional pushover counterparts, feature the ability to account for the effect that higher modes of vibration and progressive stiffness degradation might have on the distribution of seismic storey forces. Even in advanced pushover methods, little attention has been paid to the Unsymmetric structures. This study evaluates the seismic demands for three dimensional Unsymmetric-Plan buildings determined by the Displacement-based Adaptive Pushover (DAP) analysis, which has been introduced by Antoniou and Pinho [2004]. The capability of DAP procedure in capturing the torsional effects due to the irregularities of the structures, is investigated by comparing its estimates to the exact results, obtained from Incremental Dynamic Analysis (IDA). Also the capability of the procedure in prediction the seismic behaviour of the structure is discussed.

Molecular Electronic Devices based on Carotenoid Derivatives

The production of devices in nanoscale with specific molecular rectifying function is one of the most significant goals in state-of-art technology. In this work we show by ab initio quantum mechanics calculations coupled with non-equilibrium Green function, the design of an organic two-terminal device. These molecular structures have molecular source and drain with several bridge length (from five up to 11 double bonds). Our results are consistent with significant features as a molecular rectifier and can be raised up as: (a) it can be used as bi-directional symmetrical rectifier; (b) two devices integrated in one (FET with one operational region, and Thyristor thiristor); (c) Inherent stability due small intrinsic capacitance under forward/reverse bias. We utilize a scheme for the transport mechanism based on previous properties of ¤Ç bonds type that can be successfully utilized to construct organic nanodevices.

Image Adaptive Watermarking with Visual Model in Orthogonal Polynomials based Transformation Domain

In this paper, an image adaptive, invisible digital watermarking algorithm with Orthogonal Polynomials based Transformation (OPT) is proposed, for copyright protection of digital images. The proposed algorithm utilizes a visual model to determine the watermarking strength necessary to invisibly embed the watermark in the mid frequency AC coefficients of the cover image, chosen with a secret key. The visual model is designed to generate a Just Noticeable Distortion mask (JND) by analyzing the low level image characteristics such as textures, edges and luminance of the cover image in the orthogonal polynomials based transformation domain. Since the secret key is required for both embedding and extraction of watermark, it is not possible for an unauthorized user to extract the embedded watermark. The proposed scheme is robust to common image processing distortions like filtering, JPEG compression and additive noise. Experimental results show that the quality of OPT domain watermarked images is better than its DCT counterpart.

Mission of Russian Orthodox Church in Kazakhstan in the XIX Century: Activity, Expectations and Results

The focus of this research is in the area of the soviet period and the mission of the Russian Orthodox Church in Kazakhstan in the XIX century. There was close connection of national customs and traditions with religious practices, outlooks and attitudes. In particular, such an approach has alleged estimation by Kazakh historians of the process of Christianization of the local population. Some of them are inclined to consider the small number of Christening Kazakhs as evidence that the Russian Orthodox Church didn’t achieve its mission. The number of historians who think that the church didn’t achieve its mission has thousand over the last centuries, however our calculations of the number of Kazakhs who became Orthodox Christian is much more than other historians think. Such Christians can be divided into 3 groups: Some remained Christian until their deaths, others had two faiths and the third hid their true religions, having returned to their former belief. Therefore, to define the exact amount of Christening Kazakhs represented a challenge. Some data does not create a clear picture of the level of Christianization, constant and accurate was not collected. The data appearing in reports of spiritual attendants and civil authorities is not always authentic. Article purpose is illumination and the analysis missionary activity of Russian Orthodox Church in Kazakhstan. 

Inverse Dynamic Active Ground Motion Acceleration Inputs Estimation of the Retaining Structure

The innovative fuzzy estimator is used to estimate the ground motion acceleration of the retaining structure in this study. The Kalman filter without the input term and the fuzzy weighting recursive least square estimator are two main portions of this method. The innovation vector can be produced by the Kalman filter, and be applied to the fuzzy weighting recursive least square estimator to estimate the acceleration input over time. The excellent performance of this estimator is demonstrated by comparing it with the use of difference weighting function, the distinct levels of the measurement noise covariance and the initial process noise covariance. The availability and the precision of the proposed method proposed in this study can be verified by comparing the actual value and the one obtained by numerical simulation.

Multimethod Approach to Research in Interlanguage Pragmatics

Argument over the use of particular method in interlanguage pragmatics has increased recently. Researchers argued the advantages and disadvantages of each method either natural or elicited. Findings of different studies indicated that the use of one method may not provide enough data to answer all its questions. The current study investigated the validity of using multimethod approach in interlanguage pragmatics to understand the development of requests in Arabic as a second language (Arabic L2). To this end, the study adopted two methods belong to two types of data sources: the institutional discourse (natural data), and the role play (elicited data). Participants were 117 learners of Arabic L2 at the university level, representing four levels (beginners, low-intermediate, highintermediate, and advanced). Results showed that using two or more methods in interlanguage pragmatics affect the size and nature of data.

Validation of an EEG Classification Procedure Aimed at Physiological Interpretation

One approach to assess neural networks underlying the cognitive processes is to study Electroencephalography (EEG). It is relevant to detect various mental states and characterize the physiological changes that help to discriminate two situations. That is why an EEG (amplitude, synchrony) classification procedure is described, validated. The two situations are "eyes closed" and "eyes opened" in order to study the "alpha blocking response" phenomenon in the occipital area. The good classification rate between the two situations is 92.1 % (SD = 3.5%) The spatial distribution of a part of amplitude features that helps to discriminate the two situations are located in the occipital regions that permit to validate the localization method. Moreover amplitude features in frontal areas, "short distant" synchrony in frontal areas and "long distant" synchrony between frontal and occipital area also help to discriminate between the two situations. This procedure will be used for mental fatigue detection.

Printed Arabic Sub-Word Recognition Using Moments

the cursive nature of the Arabic writing makes it difficult to accurately segment characters or even deal with the whole word efficiently. Therefore, in this paper, a printed Arabic sub-word recognition system is proposed. The suggested algorithm utilizes geometrical moments as descriptors for the separated sub-words. Three types of moments are investigated and applied to the printed sub-word images after dividing each image into multiple parts using windowing. Since moments are global descriptors, the windowing mechanism allows the moments to be applied to local regions of the sub-word. The local-global mixture of the proposed scheme increases the discrimination power of the moments while keeping the simplicity and ease of use of moments.

Dynamic Window Secured Implicit Geographic Forwarding Routing for Wireless Sensor Network

Routing security is a major concerned in Wireless Sensor Network since a large scale of unattended nodes is deployed in ad hoc fashion with no possibility of a global addressing due to a limitation of node-s memory and the node have to be self organizing when the systems require a connection with the other nodes. It becomes more challenging when the nodes have to act as the router and tightly constrained on energy and computational capabilities where any existing security mechanisms are not allowed to be fitted directly. These reasons thus increasing vulnerabilities to the network layer particularly and to the whole network, generally. In this paper, a Dynamic Window Secured Implicit Geographic Forwarding (DWSIGF) routing is presented where a dynamic time is used for collection window to collect Clear to Send (CTS) control packet in order to find an appropriate hoping node. The DWIGF is expected to minimize a chance to select an attacker as the hoping node that caused by a blackhole attack that happen because of the CTS rushing attack, which promise a good network performance with high packet delivery ratios.

An Experimental Study on the Tensile Behavior of the Cracked Aluminum Plates Repaired with FML Composite Patches

Repairing of the cracks by fiber metal laminates (FMLs) was first done by some aeronautical laboratories in early 1970s. In this study, experimental investigations were done on the effect of repairing the center-cracked aluminum plates using the FML patches. The repairing processes were conducted to characterize the response of the repaired structures to tensile tests. The composite patches were made of one aluminum layer and two woven glassepoxy composite layers. Three different crack lengths in three crack angles and different patch lay-ups were examined. It was observed for the lengthen cracks, the effect of increasing the crack angle on ultimate tensile load in the structure was increase. It was indicated that the situation of metal layer in the FML patches had an important effect on the tensile response of the tested specimens. It was found when the aluminum layer is farther, the ultimate tensile load has the highest amount.

Methods of Forming Informational Culture Students

Along with the basic features of students\' culture information, with its widely usage oriented on implementation of the new information technologies in educational process that determines the search for ways of pointing to the similarity of interdisciplinary connections content, aims and objectives of the study. In this regard, the article questions about students\' information culture, and also presented information about the aims and objectives of the information culture process among students. In the formation of a professional interest in relevant information, which is an opportunity to assist in informing the professional activities of the essence of effective use of interactive methods and innovative technologies in the learning process. The result of the experiment proves the effectiveness of the information culture process of students in training the system of higher education based on the credit technology. The main purpose of this paper is a comprehensive review of students\' information culture.

Performance of BRBF System and Comparing it with the OCBF

Buckling-Restrained Braced Frame system(BRBFs) are a new type of steel seismic-load-resisting system that has found use in several countries because of its efficiency and its promise of seismic performance far superior to that of conventional braced frames. The system is addressed in the 2005 edition of the AISC Seismic Provisions for Structural Steel Buildings, also a set of design provisions has been developed by NEHRP. This report illustrates the seismic design of buckling restrained braced frames and compares the result of design in the application of earthquake load for ordinary bracing systems and buckling restrained bracing systems to see the advantage and disadvantages of this new type of seismic resisting system in comparison with the old Ordinary Concentric Braced Frame systems (OCBFs); they are defined by the provisions governing their design.

Conversion in Chemical Reactors using Hollow Cylindrical Catalyst Pellet

Heterogeneous catalysis is vital for a number of chemical, refinery and pollution control processes. The use of catalyst pellets of hollow cylindrical shape provide several distinct advantages over other common shapes, and can therefore help to enhance conversion levels in reactors. A better utilization of the catalytic material is probably most notable of these features due to the absence of the pellet core, which helps to significantly lower the effect of the internal transport resistance. This is reflected in the enhancement of the effectiveness factor. For the case of the first order irreversible kinetics, a substantial increase in the effectiveness factor can be obtained by varying shape parameters. Important shape parameters of a finite hollow cylinder are the ratio of the inside to the outside radii (κ) and the height to the diameter ratio (γ). A high value of κ the generally helps to enhance the effectiveness factor. On the other hand, lower values of the effectiveness factors are obtained when the dimension of the height and the diameter are comparable. Thus, the departure of parameter γ from the unity favors higher effectiveness factor. Since a higher effectiveness factor is a measure of a greater utilization of the catalytic material, higher conversion levels can be achieved using the hollow cylindrical pellets possessing optimized shape parameters.

Effect of Amplitude and Mean Angle of Attack on Wake of an Oscillating Airfoil

The unsteady wake of an EPPLER 361 airfoil in pitching motion has been investigated in a subsonic wind tunnel by hot-wire anemometry. The airfoil was given the pitching motion about the one-quarter chord axis at reduced frequency of 0182. Streamwise mean velocity profiles (wake profiles) were investigated at several vertically aligned points behind the airfoil at one-quarter chord downstream distance from trailing edge. Oscillation amplitude and mean angle of attack were varied to determine the effects on wake profiles. When the maximum dynamic angle of attack was below the static stall angle of attack, weak effects on wake were found by increasing oscillation amplitude and mean angle of attack. But, for higher angles of attack strong unsteady effects were appeared on the wake.

Physicochemical Characterization of MFI–Ceramic Hollow Fibres Membranes for CO2 Separation with Alkali Metal Cation

This paper present some preliminary work on the preparation and physicochemical caracterization of nanocomposite MFI-alumina structures based on alumina hollow fibres. The fibers are manufactured by a wet spinning process. α-alumina particles were dispersed in a solution of polysulfone in NMP. The resulting slurry is pressed through the annular gap of a spinneret into a precipitation bath. The resulting green fibres are sintered. The mechanical strength of the alumina hollow fibres is determined by a three-point-bending test while the pore size is characterized by bubble-point testing. The bending strength is in the range of 110 MPa while the average pore size is 450 nm for an internal diameter of 1 mm and external diameter of 1.7 mm. To characterize the MFI membranes various techniques were used for physicochemical characterization of MFI–ceramic hollow fibres membranes: The nitrogen adsorption, X-ray diffractometry, scanning electron microscopy combined with X emission microanalysis. Scanning Electron Microscopy (SEM) and Energy Dispersive Microanalysis by the X-ray were used to observe the morphology of the hollow fibre membranes (thickness, infiltration into the carrier, defects, homogeneity). No surface film, has been obtained, as observed by SEM and EDX analysis and confirmed by high temperature variation of N2 and CO2 gas permeances before cation exchange. Local analysis and characterise (SEM and EDX) and overall (by ICP elemental analysis) were conducted on two samples exchanged to determine the quantity and distribution of the cation of cesium on the cross section fibre of the zeolite between the cavities.

Remote Employment: Advantages and Challenges for Egypt-s Labor Force (After the 25thJanuary Revolution)

The growing problem of youth unemployment in Egypt after the 25th January Revolution has directed the attention of some human resource experts towards considering remote employment as a partial remedy for the unemployed youth instead of the unavailable traditional jobs, a trend which will also help with the congested offices and unsolved traffic problem in Cairo and spread a flexible work culture, but despite of that, the main issue remains unresolved for these organizations to deal with the system challenges. In the past few years, in developed countries, there has been a growing trend for many companies to shift to remote employment instead of the traditional office employment for many reasons: due to the growing technological advances that helped some employees do their work from home on a part time basis, the need for achieving an employee-s work balance in the middle of unbalanced complicated life, top management focus on employee-s productivity rather their time spent at work. The objective of this paper is to study and analyze the advantages and challenges that Egypt-s labor force will be facing in their implementation of remote or virtual employment in both government and private organizations after the 25th January revolution. Therefore, the research question will be: What are the advantages and different challenges that Egyptian organizations might face in their implementation for remote employment system and how can they manage these challenges for the system to work effectively? The study is divided into six main parts: the introduction, objective and importance of the study, research problem, methodology, experience of some countries that implemented remote employment, advantages and challenges of implementing remote employment in Egypt and then the conclusion which discuses the results and recommendations of the study.